INFLACION Y CRECIMIENTO*

STANLEY FISCHER**

ABSTRACT

Facts disagree with the implication that inflation and growth are positively correlated. Cross-section time series for the periods 1961-1973 and 1973-1981 suggest a significant negative contemporaneous correlation among both variables.

There are several economic mechanisms linking inflation output and growth. I use here a variant of the Sidrauski optimizing model to study the relationship among these variables under the assumptions that money enters the production function and that the printing of money is used to finance government spending.

The model embodies two potential links between inflation and growth: reductions in real balance reduce the productivity of factors of production and changes in the inflation rate may be a result of changes in government spending. I also examine the effects of supply shoks, thus allowing for the impact of autonomous changes in output of the inflation rate. The general results to be expected are that inflation and growth will be negatively correlated.

Gran parte del trabajo de investigación de Miguel Sidrauski se centró en la relación existente entre inflación y crecimiento económico. Se destacan dos de sus contribuciones. La primera de ellas es el conocido modelo de optimización intertemporal (1967a) –el modelo de Sidrauski–, donde el resultado principal es que cambios en la tasa de crecimiento del dinero no afectan en el largo plazo el stock de capital. La segunda es su trabajo (1967b) donde desarrolla el modelo de dinero y crecimiento de Tobin (1965), con una tasa de ahorro constante, y en el cual la intensidad de capital de equilibrio crece junto con la tasa de inflación. Por lo tanto, en este modelo, un aumento en la tasa de crecimiento del dinero reduce la tasa de crecimiento del producto en el corto plazo, mientras crece la tasa de inflación.

El enfoque de Sidrauski al problema de dinero, inflación y crecimiento señala a la substitución de portafolio como la fuerza básica que lleva a determinar la relación entre inflación y crecimiento. Por ejemplo, en su modelo descriptivo (Sidrauski 1967b), un incremento en la tasa de crecimiento del dinero precede al aumento en la tasa esperada de inflación, y, por consiguiente, reduce la demanda por saldos reales. Con la tasa de ahorro dada, una mayor proporción del ahorro toma la forma de capital físico y disminuye la proporción en forma de dinero (de alto poder). La intensidad de capital de equilibrio es entonces mayor. Los factores fiscales son tomados en cuenta, ya que en ambos trabajos se cambia el stock de dinero a través de aumentos en los pagos de transferencia.

* Preparado para la exposición en memoria de Miguel Sidrauski. II Congreso Latinoamericano de la Sociedad Econometrónica, Santiago, Chile, 21 de julio, 1983. Quisiera agradecer a David Wilcox por su asistencia en la investigación, y a la Fundación Nacional de la Ciencia por el financiamiento.

** Massachusetts Institute of Technology (MIT).
En su trabajo con Duncan Foley (1970 y 1971), Sidrauski pudo usar una definición más sofisticada de política monetaria, y también apartarse del tratamiento del crecimiento del dinero como una variable exógena a la economía. Los tres activos son sustitutos imperfectos del portafolio. La política monetaria está definida ahora por los cambios en la razón dinero a bonos, causados, por ejemplo, por una operación de mercado abierto. Ya que el dinero y los bonos son sustitutos imperfectos, las operaciones de mercado abierto tienen efectos reales. En este trabajo se visualiza al gobierno como uno que posee trayectorias deseadas, tanto para la tasa de inflación como para otras variables endógenas, y que usa sus variables de política, incluyendo la composición de la deuda y la tasa de crecimiento del stock nominal de la deuda, para alcanzar dichas trayectorias.

En el modelo de Foley y Sidrauski, los cambios en la tasa de inflación, tanto actual como esperada, típicamente aumentan el stock de capital del equilibrio estacionario. Nuevamente, el cambio en el stock de capital es la consecuencia del traslado del portafolio desde el dinero hacia el capital que acompaña una reducción en el retorno real esperado del dinero, combinado con la especificación en la función de consumo. Si el cambio en la tasa de inflación ocurre como resultado de un cambio en la tasa de crecimiento del stock nominal de la deuda y la composición de la deuda se ajusta a través de la política monetaria para prevenir un cambio brusco en el nivel de precios, cuando la tasa de inflación cambie no tendrá efectos sobre el stock de capital.

A pesar de las ambigüedades de la relación entre inflación e intensidad de capital en el trabajo de Sidrauski, los resultados generales sugieren que una inflación mayor estaría asociada con una mayor intensidad de capital. Esto no tiene ninguna implicación para la relación inflación-crecimiento, ya que en el equilibrio estacionario la tasa de crecimiento está determinada por el incremento en la productividad y en su población. Pero la relación inflación-intensidad de capital del equilibrio estacionario implica una relación entre la inflación y el crecimiento en el proceso de ajuste. Si una mayor tasa de inflación es asociada con una mayor intensidad de capital, entonces en la transición de un equilibrio estacionario a otro, la tasa de crecimiento del producto tiene, en promedio, que estar sobre la tasa de crecimiento de la población, y de la productividad. Por lo tanto, si a una mayor inflación se le asocia con una mayor intensidad de capital, deberíamos esperar que, en promedio, mayores tasas de inflación estarán asociadas con mayores tasas de crecimiento del producto. Incluso, aún en el modelo de optimización de Sidrauski, aumentos en la tasa de inflación que no afectan el stock de capital del equilibrio estacionario, pueden incrementar la tasa de crecimiento del producto en el corto plazo (Fischer, 1979).

1 La importancia de los supuestos sobre sustitutabilidad de los activos fue enfatizada por Tobin (1961). Es claro que el modelo de Foley y Sidrauski debe parte de su estructura a la tradición de Yale, en la cual Foley fue educado. Esto es evidente no sólo en cuanto a los activos, sino también en el rol esencial que juega el precio relativo del capital, el cual en este modelo de dos sectores es equivalente a la “q” de Tobin en el modelo de un sector.

2 El análisis es presentado en el Capítulo 12 del trabajo de Foley y Sidrauski (1971). Es interesante denotar que en este capítulo los autores cuidan mucho de que cambios bruscos en el nivel de precios sean prevenidos a través de políticas monetarias y fiscales apropiadas cuando la tasa de inflación cambia. Estas son de tal forma que no “decepcionan las expectativas privadas” (p. 190). No obstante, en los ejercicios presentados en el Capítulo 12, un cambio en la tasa esperada de inflación puede variar el precio relativo del capital no anticipadamente. Por lo tanto, no se puede presumir que el análisis suponga expectativas perfectas.

3 En Sidrauski (1967b), un aumento en la tasa de crecimiento del dinero en el corto plazo es asociado con una menor tasa de crecimiento del producto, a pesar de la correlación positiva entre inflación e intensidad de capital del equilibrio estacionario. Este resultado depender del supuesto de expectativas adaptativas; desaparece si las expectativas son racionales y se permite que el nivel de precios varíe cuando cambia la tasa de crecimiento del dinero.
Sidrauskí escribió sus trabajos sobre inflación y crecimiento en la segunda mitad de los años sesenta. Luego de la década estaglacionaria de los setenta, sería sorprendente encontrar cualquier relación sistemática entre la tasa de crecimiento del producto y la tasa de inflación. Las ecuaciones (R1) y (R2) son los resultados de regresiones de series de tiempo y de corte transversal para los períodos 1961-1973 y 1973-1981, respectivamente, y para una muestra de 53 países escogidos exclusivamente por el acceso a los datos en las cuentas del *International Financial Statistics*.

(R1) \[g_{y,t} = \alpha_i + \alpha_t - .049 g_{y,t-1} + .192 g_{p,t} - .060 g_{p,t-1} \]
\[(0.044) \quad (0.022) \quad (0.023) \]
\[\bar{R}^2 = .508 \]

(R2) \[g_{y,t} = \alpha_i + \alpha_t + .341 g_{y,t-1} - .868 g_{p,t} + .288 g_{p,t-1} \]
\[(0.047) \quad (0.021) \quad (0.045) \]
\[\bar{R}^2 = .803 \]

En estas regresiones \(g_{y,t} \) es la tasa de crecimiento del producto en el país durante el período \(t \), y \(g_{p,t} \) es la tasa de inflación. El período de tiempo y el coeficiente específico del país, \(\alpha_t \) y \(\alpha_i \), no son presentados.

Ambas regresiones muestran el mismo patrón: una relación contemporánea negativa entre crecimiento y tasa de inflación, y una relación con retraso positiva. Los coeficientes de las variables de inflación son altamente significativos en todos los casos. Formando promedios a través de 54 países para ambos períodos de tiempo, obtenemos las cifras mostradas en el cuadro 1. Como deberíamos haber esperado, no hay ninguna señal de una relación positiva entre inflación y crecimiento entre los dos períodos y aún dentro de cada subperíodo, las regresiones muestran una relación predominantemente negativa en vez de positiva entre inflación y crecimiento.

CUADRO 1

INFLACION Y CRECIMIENTO, PROMEDIOS ANUALES A TRAVES DE PAISES Y AÑOS

(\% por año)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasa de inflación</td>
<td>6.83</td>
<td>14.31</td>
</tr>
<tr>
<td>Tasa de crecimiento</td>
<td>5.10</td>
<td>4.33</td>
</tr>
</tbody>
</table>

Los hechos, por lo tanto, están en desacuerdo con la deducción de que inflación y crecimiento están positivamente correlacionados: existe una significativa correlación contemporánea negativa. En la sección siguiente, repaso algunas hipótesis sobre los vínculos entre inflación, producto y crecimiento. Luego, en el resto de este trabajo presento un simple tipo de modelo de optimización de Sidrauskí, basado en algunos de estos vínculos que sugieren la causa de que pueda observarse una relación negativa entre inflación y crecimiento.

4 La muestra no es aleatoria, ya que los países de mayores ingresos son los que tienen información más completa. La lista de países se encuentra en el Apéndice 1.
1. Los Mecanismos que vinculan Inflación, Producto y Crecimiento

Hay muchos mecanismos económicos que vinculan inflación, producto y crecimiento. (i) El primero es el vínculo con el portafolio enfatizado por Sidrauski. Un aumento en la tasa esperada de inflación ocasiona un traslado desde el dinero hacia el capital en el portafolio. En un modelo de dos sectores, esto aumenta el precio relativo del capital instalado, llevando a mayores tasas de inversión y crecimiento y, en última instancia, a una mayor intensidad de capital en la producción. No obstante, el comportamiento del ahorro puede romper el vínculo. Por ejemplo, si los ahorros llevan a la tasa de interés a la igualdad con la tasa de preferencia en el tiempo (ajustada por crecimiento), cambios en la tasa de inflación pueden no alterar el equilibrio estacionario de la intensidad de capital, como en Sidrauski (1967a)\(^5\).

(ii) Los sistemas de impuestos que no se ajustan por inflación pueden llevar a que el retorno real de capital a largo plazo de impuestos sea una función decreciente de la tasa de inflación, aun si la tasa de retorno antes de impuestos es independiente de la tasa de inflación. Este es el mecanismo señalado por Feldstein (1976), que tiende a reducir la intensidad de capital del equilibrio estacionario mientras la tasa de inflación sube.

(iii) Si la tasa de crecimiento del stock de dinero está dada, un incremento en la tasa de crecimiento del producto tiende a reducir la tasa de inflación, ya que la demanda por saldos reales aumenta más rápidamente. En forma equivalente, un shock adverso de oferta llevará a un incremento en la tasa de inflación al mismo tiempo que el nivel de producto o, en el corto plazo, la tasa de crecimiento del producto cae.

(iv) Si el gasto fiscal es financiado en parte a través de la emisión de dinero, entonces una reducción en la tasa de crecimiento del producto, al bajar la demanda por saldos reales, puede hacer necesario que el gobierno aumente la tasa de crecimiento del dinero. Este es un caso especial del “dinero pasivo”, en el enfoque enfatizado por Olivera (1970).

(v) Aumentos en la tasa de inflación llevarán a menores saldos reales y a la distracción de recursos reales para realizar transacciones. Esto reduce el producto. En forma más general, parece ser que mayores tasas de inflación, tanto anticipada como no anticipada, reducen la eficiencia del sistema de precios y la productividad de los factores.

(vi) La curva de Phillips de corto plazo implica que incrementos en el producto y la tasa de inflación (tal vez la tasa de inflación no anticipada) están asociados positivamente.

En este trabajo, utilizo una variante del modelo de optimización de Sidrauski para estudiar las relaciones entre inflación, producto y crecimiento bajo los supuestos de que el dinero entra en la función de producción y que la impresión de dinero es usada para financiar el gasto fiscal. También incluyo en el modelo dos de los potenciales vínculos entre inflación y crecimiento que fueron enunciados más arriba: las reducciones de saldos reales reducen la productividad de los factores de producción (punto v); y que cambios en la tasa de inflación pueden ser el resultado de cambios en el gasto fiscal (punto iv). También examinaré los efectos de shocks de oferta permitiendo, por tanto, el impacto de cambios autónomos del producto en la tasa de inflación (punto iii). Los resultados generales esperados son que la inflación y el crecimiento estarán negativamente correlacionados.

2. Un modelo de Optimización con Dinero en la función de Producción

Comienzo con un simple modelo donde la tasa de crecimiento del dinero es exógena, pero donde el dinero entra en la función de producción en lugar de hacerlo en la función

\(^5\) Dornbusch y Frenkel (1973) muestran que la relación entre la inflación y la intensidad de capital de equilibrio depende en los efectos de la forma reducida de un incremento en la tasa de inflación sobre el consumo.
de utilidad. Como expuso Sidrauski en su tesis (1967c, p. 53) la inclusión de la oferta monetaria en la función de producción remueve la supernormalidad del dinero, lo cual es el resultado más conocido de su modelo de optimización monetaria. El dinero se incluye en la función de producción para que represente la noción de que mayores niveles de saldos reales liberan el trabajo y otros recursos para un uso más productivo. La práctica puede ser rigurosamente justificada (Fischer, 1974).

La familia representativa maximiza la siguiente función de utilidad (aditiva y separada):

1. \[V_o = \int_0^\infty u(c_t) e^{-\delta t} dt \]

 sujeta a las siguientes restricciones:

2. \[\dot{a}_t = r_t k_t + w_t + i_t m_t - \pi_t m_t + \nu_t - c_t - na_t \]

3. \[a_t = k_t + m_t \]

La mayoría de las letras representan las variables estándares y todas las variables relevantes son per cápita: a es riqueza, \(r \) es la tasa de interés real, \(w \) es la tasa de salarios, i la tasa nominal de interés, \(\pi \) la tasa de inflación esperada, \(\nu \) es el valor real per cápita de las transferencias a través de las cuales son introducidos los saldos monetarios, \(n \) es la tasa de crecimiento de la familia. La familia tiene un monto \(a_t \) de riqueza en el período t, la cual se distribuye entre capital y saldos monetarios.

El stock de dinero está creciendo a una tasa constante \(\theta \), tal que el valor real per cápita de los pagos de transferencia \(\nu_t \) sea igual a \[\frac{\dot{M}}{PN} = \frac{\dot{M}}{M} = \theta \]

El capital físico y los saldos reales son arrendados a las firmas a las tasas \(r \) e \(i \), respectivamente. Las firmas maximizan los beneficios obteniendo el producto a través de la función de producción neoclásica.

4. \[\gamma_t = f(k_t, m_t) \]

donde nuevamente, todas las variables son per cápita.

Las condiciones de primer orden para un máximo interno de los agentes son:

5. \[u' = \lambda_1 \]

6. \[i_t - \pi_t = r_t \]

7. \[\frac{\lambda_1}{\lambda} = \frac{u''}{u'} = \delta + n - r_t \]

Aquí \(\lambda_1 \) es el multiplicador en la restricción presupuestaria-flujo (2). Nótese que para una maximización interior los retornos reales del capital y los saldos reales deben ser iguales.

Las condiciones de primer orden son:

8. \[f_k (k, m) = r_t \]

9. \[f_m (k, m) = i_t = r_t + \pi_t \]
Es útil resolver (8) y (9) para \(\pi \) como función de \(k \) y \(m \) para propósitos posteriores\(^6\)

\[
\begin{align*}
\pi &= \pi(k, m) \\
\pi_1 &= f_{mk} - f_{kk} > 0 \\
\pi_2 &= f_{mm} - f_{km} < 0
\end{align*}
\]

De la definición del stock monetario per cápita \(m = \frac{M}{PN} \), obtenemos:

\[
\dot{m} = [\theta - (\pi(k, m) + n)]m
\]

El equilibrio estacionario: En equilibrio estacionario \(k, m, c, \) y \(\pi \) son constantes. De (11) obtenemos que en el equilibrio estacionario:

\[
\pi^* = \theta - n = \pi(k, m)
\]

donde \(\pi^* \) es la tasa de inflación en equilibrio estacionario. De (7) obtenemos:

\[
r^* = \delta + n = f_k(k, m)
\]

queriendo decir esto que la tasa de interés real es invariable a la tasa de inflación del equilibrio estacionario.

No obstante, en este modelo, el dinero no es super neutral. Usando (12) y (13) y suponiendo que \(f_{km} > 0 \), mostramos en el gráfico 1 las curvas en el espacio \((k, m) \) donde \(\dot{c} \) y \(\dot{m} \) son cero: estas son las ecuaciones (13) y (12) respectivamente. Puede ser demostrado que la curva \((\dot{c} = 0) \) tiene mayor pendiente que la curva \((\dot{m} = 0) \).

GRAFICO 1

DETERMINACION DE LOS SALDOS REALES Y CAPITAL EN EL EQUILIBRIO ESTACIONARIO

\[\text{Diagrama mostrando la relación} \]

\[\text{entre} \ k, \ m, \ \dot{m}, \ \pi \text{y} \ c \text{en el equilibrio estacionario.} \]

\(^6\) Es más intuitivo pensar que (8) y (9) proporcionan funciones de demanda por los factores de producción como funciones de \(r \) y \(\pi \). La ecuación (10), entonces, sólo invierte la relación. Por simplicidad supongo que \(f_{mk} > 0 \).
Ahora, usando (12), un incremento en la tasa de crecimiento del dinero (lo que aumenta la tasa de inflación del equilibrio estacionario) traslada la curva \((\dot{m} = 0)\) hacia abajo a \((\dot{m} = 0)'\). Tanto \(k\) como \(m\) caen, por lo tanto el producto per cápita de equilibrio cae. Por consiguiente, como se esperaría en este caso, la mayor inflación reduce el producto. En la transición entre equilibrios estacionarios, la mayor inflación es acompañada por un menor crecimiento del producto.

En forma similar, en el gráfico 2 analizamos los efectos de un incremento en la tasa de crecimiento de la población \(n\). Ambas curvas, \((\dot{m} = 0)\) y \((\dot{c} = 0)\), retroceden a \((\dot{m} = 0)'\) y \((\dot{c} = 0)'\) respectivamente. Puede ser demostrado que los traslados son de naturaleza tal que reducen tanto \(k^*\) como \(m^*\). La economía, entonces, se mueve de una posición semejante a \(E\) a una como \(E'\). El producto per cápita del equilibrio estacionario se ve, por lo tanto, reducido. Ya que un aumento en \(n\) reduce la tasa de inflación del equilibrio estacionario, nuevamente tenemos una relación negativa entre inflación y producto, esta vez a través de equilibrios estacionarios. Por igual razón que lo anterior, deberíamos esperar una relación negativa en la transición de un equilibrio a otro.

GRAFICO 2

EFECTOS DE UN INCREMENTO EN LA TASA DE CRECIMIENTO DE LA POBLACIÓN

![Gráfico 2](image)

El Equilibrio Estacionario con Crecimiento en la Productividad. Suponemos ahora que existe un progreso técnico que aumenta el factor trabajo a una tasa \(u\), y que la función de utilidad es de la forma:

\[
(14) \quad U(c) = \frac{c^{1-R}}{1-R} \quad R > 0
\]

donde \(R\) es el coeficiente de aversión al riesgo relativo y también la elasticidad de la utilidad marginal.

En este caso existe un equilibrio estacionario, en donde las razones de las variables a las unidades de trabajo efectivo son constantes. La tasa de interés real del equilibrio estacionario está dada por

\[
(15) \quad r^* = \delta + \eta + R \mu
\]
y la tasa de inflación de equilibrio estacionario es:

\[(16) \quad \pi^* = \theta - (n + \mu) \]

La tasa de crecimiento y la de inflación también están inversamente relacionadas en este caso. Más aún, pareciera ser, aunque no con certeza, que la relación de corto plazo entre crecimiento del producto e inflación también es negativa. La ambigüedad surge porque puede existir una fase de desacumulación de capital y tal vez menor crecimiento inmediatamente después del incremento en la tasa de crecimiento de la productividad\(^7\).

La Trayectoria de Ajuste. Asumo que existen expectativas perfectas, de manera tal que las tasas de inflación actual y esperadas sean las mismas. En ese caso, las ecuaciones dinámicas del modelo serían (17), (11) y (7):

\[(17) \quad \dot{k}_t = f(k_t, m_t) - c_t - nk_t \]

\[(7) \quad \dot{c}_t = \frac{u'}{u''} \left[\delta + n - f_k(k, m) \right] \]

\[(11) \quad \dot{m} = \left[\theta - (\pi(m, k) + n) \right] m \]

La ecuación (17) no es una restricción explícita al comportamiento de cualquier agente individual en el modelo, pero debe ser satisfecha en un equilibrio con expectativas perfectas.

En el Apéndice 2 se muestra que existe una raíz única estable para el sistema dinámico: (17), (7) y (11) linealizado alrededor del equilibrio estacionario. La solución para una trayectoria óptima del stock de capital puede ser escrita como:

\[(18) \quad k_t - k^* = (k_0 - k^*) e^{zt} \]

donde \(z \) es la raíz única estable del sistema, \(k^* \) es el stock de capital del equilibrio estacionario, y \(k_0 \) es el stock de capital inicial.

El comportamiento de la tasa de inflación en el proceso puede ser derivado de (10), dada la dinámica de \(m \) y \(k \). En particular, obtenemos

\[(19) \quad \dot{\pi} = \frac{\pi_1 z}{z + \pi_2 m} \dot{k} \]

Ambos, el numerador y el denominador de la razón en (19) son negativos, de manera que la razón misma es positiva. Esto significa que la tasa de inflación está creciendo mientras el capital está siendo acumulado. Este resultado puede parecer paradójico hasta que uno se da cuenta que en la trayectoria de ajuste la tasa de crecimiento del stock de capital está cayendo mientras el capital se acumula. Por consiguiente, encontramos una relación negativa entre la tasa de inflación y la tasa de crecimiento durante la trayectoria de ajuste.

Un Shock de Oferta: Supongamos que la economía está en equilibrio estacionario y que se produce un shock de oferta del tipo neutral a la Hicks. Representamos este hecho, reescribiendo la función producción (4) como:

\[\text{Ya que } k \text{ y } m \text{ son ahora razones de capital y saldos reales, respectivamente, con respecto al trabajo efectivo y no al actual, es difícil comparar las situaciones pre y postincremento de productividad.} \]

\(^7\) Ya que \(k \) y \(m \) son ahora razones de capital y saldos reales, respectivamente, con respecto al trabajo efectivo y no al actual, es difícil comparar las situaciones pre y postincremento de productividad.
(4`) \[y_t = A f(k_t, m_t) \]

El shock de oferta está representado por una caída en A de 1 a un menor nivel.

Podemos analizar las consecuencias de una caída en A considerando sus efectos en el stock de capital de equilibrio. Usando las ecuaciones (12) y (13), puede mostrarse que un shock de oferta natural a la Hicks adverso reduce tanto el stock de capital de equilibrio como el stock de saldos reales de equilibrio. Entonces el ajuste dinámico toma la forma de una reducción gradual del stock de capital, acompañado por una caída en la tasa de inflación.

Ya que la tasa de inflación del equilibrio estacionario luego del shock permanente de oferta está nuevamente en su nivel inicial, el período de transición está marcado por una tasa de inflación mayor que la de equilibrio estacionario, junto con un menor crecimiento que el de equilibrio estacionario mientras el capital está siendo desacumulado. Nuevamente, existe una relación negativa entre las tasas de crecimiento del producto y la de inflación durante el proceso de ajuste.

En el modelo de esta sección, donde la tasa de crecimiento del stock de dinero es exógena, la relación predominante entre tasa de inflación, por un lado, y la tasa de crecimiento o el nivel de producto, por el otro, es negativa. En todos los casos que hemos examinado, hemos encontrado que dicha relación es negativa. La diferencia básica entre la estructura de este modelo y aquél de Sidrauski (1967a) es que en esta sección el dinero es tratado como un factor de producción más que como un argumento de la función de utilidad. Esto, como fue notado por Sidrauski, lleva a la no neutralidad de la tasa de inflación.

Más allá de lo anterior, la teoría también sugiere que la tasa de inflación y la de crecimiento del producto deberían estar, en general, negativamente correlacionadas. Tal resultado también se obtiene del modelo de Sidrauski para algunos de los ejercicios ya examinados. Por ejemplo, dada la tasa de crecimiento del stock de dinero, un aumento en la tasa de crecimiento de la productividad reducirá la tasa de inflación del equilibrio estacionario tanto en este modelo como en el de Sidrauski. Por lo tanto, no existe ninguna razón, aún en el modelo original de Sidrauski, que implique que sólo puede existir una relación unidireccional entre inflación y crecimiento.

3. Financiamiento Monetario para el Gasto Fiscal

El último vínculo posible entre inflación y producto que examinaremos surge del uso del impuesto inflación para financiar gasto fiscal\(^8\). El conjunto de ecuaciones cambia muy poco. En la ecuación (2), la restricción presupuestaria (flujo) del consumidor, el término \(\nu_t \) desaparece, ya que el gobierno no continúa efectuando pagos de transferencia. Las condiciones de primer orden para los agentes y las firmas no cambia, como tampoco la ecuación de inflación (10).

Los cambios surgen durante la descripción del sistema dinámico, representado por las ecuaciones (7), (11) y (17). Supongamos que las compras del gobierno cada período sean igual a \(\gamma_c \). La razón de compras gubernamentales a consumo es ahora constante\(^9\). Las ecuaciones dinámicas son:

\[
(20) \quad \dot{k} = f(k, m) - c (1 + \gamma) - nk
\]

\(^8\) Ver Dornbusch (1977) para un análisis previo de dinero como endógena.

\(^9\) En un análisis más completo, con un gobierno maximizador, esta razón podría ser endógena.
\[
\dot{c} = -\frac{u''}{u'} \left(\delta + n - f_k(k, m) \right) \\
\dot{m} = \gamma_c - \left[\pi(m, k) + n \right] m
\]

Los siguientes resultados pueden ser demostrados para valores de \(\gamma \) pequeños. Primero, con un \(\gamma \) constante existe una única trayectoria de expectativa perfecta para la economía, con el mismo comportamiento dinámico que en la Sección 2. Segundo, están los resultados esperados para equilibrios estacionarios comparativos. Un aumento en \(\gamma \), es decir en el gasto fiscal financiado a través del impuesto inflación, reduce tanto los saldos reales como el stock de capital del equilibrio estacionario, y aumenta la tasa de inflación de dicho equilibrio.

Era de esperar, dado que los saldos reales forman parte de la función de producción, que encontraríamos aquí, al igual que en el modelo anterior, una relación negativa entre inflación y producto en el equilibrio estacionario. No obstante, el resultado no depende de la inclusión de los saldos reales en la función de producción porque, aunque el dinero fuera un bien de consumo como en el modelo original de optimización de Sidrauski, encontramos una correlación similar.

4. Comentarios Finales

Hemos demostrado, usando principalmente el modelo introducido por Sidrauski, que de varios factores económicos cada uno respalda la correlación negativa entre inflación y crecimiento o entre inflación y producto, incluso sin tomar en cuenta los posibles efectos significativos de un impuesto. Sólo la curva de Phillips sugiere la posibilidad de encontrar una relación contraria entre inflación y crecimiento, al menos en el corto plazo. Pero este modelo, donde existe una información completa y una flexibilidad de precios total, no se presta para un análisis del tipo curva de Phillips.

Por supuesto, el conjunto entre los resultados del trabajo y los de Sidrauski (1967a) sugiere una advertencia que es enfatizada al considerar la historia de la curva de Phillips: no parece existir una correlación única entre dos variables endógenas que sea independiente de las distorsiones, inducidas por políticas u otras, que las lleve a cambiar. Usualmente, cuando se examina una relación como aquella entre inflación y crecimiento, se tiene un problema de política en mente: por ejemplo, si se financia el déficit con dinero, ¿esto llevará a un mayor stock de capital que si se financia con deuda? Es preferible preguntarse directamente el efecto de la política, que dudar de la correlación entre inflación y crecimiento.

Gran parte de los resultados presentados en este trabajo se derivan de un análisis comparativo de equilibrios estacionales. Pero esto no impide usar los modelos para examinar los efectos de cambios de políticas y para estudiar el proceso de ajuste. La única innovación introducida aquí es el uso de expectativas perfectas, ya que Sidrauski usa expectativas adaptativas al examinar el proceso de ajuste en el modelo maximizador planteado en su tesis. Sidrauski, por supuesto, no usa expectativas racionales en su trabajo. Pero en su construcción de un modelo macro completo, con agentes maximizadores, tenía la certeza de que es dominante en gran parte de la macroeconomía actual.
APÉNDICE 1
Países incluidos en la muestra

Alemania Francia Nueva Zelandia
Argentina Grecia Nigeria
Australia Guyana Noruega
Austria Haití Pakistán
Bélgica Honduras Paraguay
Burma Holanda Perú
Canadá India Singapur
Colombia Indonesia Sudáfrica
Corea Inglaterra Suecia
Costa Rica Islandia Suiza
Chipre Irlanda Tailandia
Dinamarca Israel Túnez
Ecuador Italia Turquía
El Salvador Jamaica Venezuela
España Japón Yugoslavía
Estados Unidos Luxemburgo Zaire
Filipinas Malawi Zambia
Finlandia Nepal

APÉNDICE 2: ANÁLISIS DE ESTABILIDAD

1. El modelo discutido en la sección 2 se describe por medio de las ecuaciones (17), (7) y (11). Linearizando estas ecuaciones alrededor del equilibrio estacionario se obtiene:

\[\begin{align*}
\dot{k} &= \delta - 1 - f_m \frac{dk}{dk} \\
\dot{c} &= -\frac{u'}{u''} f_{kk} - u' \frac{f_{km}}{u''} \frac{dc}{dc} \\
\dot{m} &= -\pi_1 m - \pi_2 m \frac{dm}{dm}
\end{align*} \]

(A1)

2. El determinante del sistema anterior es:

\[\Delta = \frac{m \cdot u'}{u''} \left[f_{kk} f_{mm} - f_{mk}^2 \right] < 0 \]

Ya que el determinante es el producto de las raíces, existen una o tres raíces negativas.

3. La traza de la matriz anterior es:

\[\text{Tr} = \delta - \pi_2 m > 0 \]

La traza es la suma de las raíces. Ya que ésta es positiva, no todas las raíces pueden ser negativas. Entonces existe sólo una raíz negativa.
BIBLIOGRAFÍA

