POLITICAS DE TIPO DE CAMBIO: UN MODELO DE TRES PAISES*

PATRICIO MUJICA R.**

ABSTRACT

This paper examines two issues. The first is related to the optimal design of exchange market intervention for a small open economy that faces domestic and foreign random disturbances. The second issue is related to the implications for a small economy of alternative exchange rate regimes in the rest of the world. In particular, the paper will explore the effects of coordinated intervention policies in the rest of the world on the economic performance of a small open economy.

In order to focus on these issues, this paper develops and analyzes a three-country stochastic model in which a small open economy interacts with two large economies. The framework of the model is characterized by the presence of uncertainty and incomplete current information, where agent's expectations are formed in a rational manner. A key assumption of the model is that goods and assets are considered imperfect substitutes internationally. Each country uses open market operations to peg its nominal interest rate and exchange rate policies consist of sterilized interventions linked to exchange rate movements.

1. INTRODUCCIÓN

Este trabajo examina dos temas. El primero, se relaciona con la determinación del grado óptimo de intervención en el mercado cambiario, en economías sujetas a perturbaciones estocásticas de origen doméstico y/o externo. En esta parte se enfatiza la importancia de la distinción entre economías grandes y pequeñas para la formulación óptima de políticas cambiarias. El segundo tema que se aborda en este trabajo está relacionado con el efecto de políticas coordinadas de intervención entre economías grandes sobre la estabilidad de una economía pequeña y abierta al exterior.

Hasta comienzos de los años setenta la mayoría de los países mantenían un tipo de cambio fijo entre sus monedas. Con el colapso del sistema de Bretton Woods, en 1973, muchos de ellos iniciaron políticas de flotación regulada, permitiendo variar, en mayor o menor grado, sus tipos de cambio en respuesta a las presiones del mercado. Sin embargo, la experiencia con tipos de cambios flexibles señala que los movimientos del tipo de cambio...
de cambio pueden ser extremadamente volátiles e impredecibles y eventualmente pueden introducir ineficiencias en el proceso de asignación de recursos.

Como una reacción, por un lado, al colapso del sistema de tipo de cambio fijo y, por otro, a la percepción de que los tipos de cambio flexibles han sido extremadamente erráticos, el énfasis en la literatura especializada se ha trasladado desde el examen de las ventajas relativas de regímenes con tipo de cambio fijo versus regímenes con tipo de cambio flexible hacia la determinación del grado óptimo de intervención en el mercado cambiario.

Con pocas excepciones, la literatura existente sobre políticas de intervención se ha restringido a: i) modelos de economías pequeñas y abiertas en que las fuentes subyacentes de las fluctuaciones en el resto del mundo no son analizadas, y ii) modelos de dos o más países en que los efectos de políticas coordinadas sobre un país no-miembro son ignoradas.

En este artículo se investigan los efectos de políticas cambiarias alternativas en el contexto de un modelo de tres países, en el cual una economía pequeña y abierta interactúa con dos economías grandes. Esto permite modelar explícitamente el resto del mundo desde la perspectiva del país pequeño y adicionalmente permite analizar los efectos de políticas coordinadas de intervención en el resto del mundo sobre la economía pequeña, en forma explícita. Un supuesto clave del modelo es la presencia de bienes y activos domésticos y externos que no son sustitutos perfectos entre sí. Adicionalmente se supone que cada país fija su tasa de interés nominal a través de operaciones de mercado abierto y que sus políticas cambiarias consisten en intervenciones esterilizadas. Finalmente, la información que disponen los agentes económicos es incompleta y se asume que las expectativas son racionales.

Los principales resultados presentados en este trabajo pueden resumirse como sigue. Primero, es probable que ni un tipo de cambio fijo ni uno perfectamente flexible sean óptimos para una economía pequeña. En general, una política cambiaria óptima requiere una respuesta finita de la oferta monetaria frente a los movimientos en el tipo de cambio. Segundo, una política de intervención óptima puede en ocasiones tener un carácter procíclico, reforzando el movimiento inicial del tipo de cambio. Tercero, la elección de una moneda de referencia óptima depende solamente de la participación relativa de los precios externos en el índice de precios doméstico y es independiente de la fuente de las perturbaciones. Cuarto, los efectos de políticas coordinadas de intervención en el resto del mundo no son necesariamente simétricos. La coordinación de políticas entre economías grandes puede tener repercusiones negativas sobre el desempeño de una economía pequeña y abierta.

La organización del trabajo es la siguiente: en la sección 2 se presenta una reseña de la literatura sobre intervención óptima en el mercado cambiario. En la sección 3 se muestra la estructura básica de una economía pequeña y abierta y en la sección 4 se analiza la solución del modelo con expectativas racionales. En la sección 5 se discute la elección de políticas de intervención cambiaria óptima bajo distintos escenarios. La elección de una moneda de referencia óptima para una economía pequeña es el tema analizado en la sección 6. En la sección 7 el resto del mundo es modelado en un contexto de dos economías grandes con políticas macroeconómicas interdependientes. La solución del modelo presentado en la sección anterior se utiliza en la sección 8 para discutir la formulación de políticas de coordinación óptimas desde la perspectiva de las 2 economías grandes. La sección 9 resume los principales efectos asociados a la coordinación de políticas en el resto del mundo para una economía pequeña y abierta. Finalmente, la sección 10 presenta algunas consideraciones de carácter general y posibles extensiones del modelo básico.
2. Breve reseña de la literatura

La naturaleza de las políticas de intervención en el mercado cambiario y sus condiciones de optimalidad han comenzado a recibir una atención creciente en la literatura. Tradicionalmente, las políticas de intervención son descritas a través de normas de retroalimentación que relacionan los movimientos en la oferta de dinero con las fluctuaciones del tipo de cambio. En este contexto, los sistemas de tipo de cambio fijo y flexible representan formas extremas de políticas intervencionistas. Naturalmente, surgen de la literatura sobre el tema diversos criterios o reglas óptimas de intervención, dependiendo de los objetivos perseguidos, los supuestos utilizados y la naturaleza de las perturbaciones consideradas. Sin embargo, una conclusión más o menos generalizada en la literatura, es que una política de intervención cambiaria óptima es inconsistente con los casos extremos de intervención asociados a los sistemas de tipo de cambio fijo o flotación pura (véase Boyer (1978), Roper y Turnovsky (1980), Frenkel y Aizenman (1982), Turnovsky (1983), Driskill y McCafferty (1985) y Flood y Hodrick (1985), entre otros).

La determinación del grado óptimo de intervención en el mercado cambiario es analizada por Boyer (1982) en el contexto de la literatura de “objetivos, instrumentos e indicadores”. En su modelo hay dos mercados (mercado de bienes y mercado monetario) y el objetivo de la autoridad consiste en estabilizar el producto real. Las formas de intervención se clasifican de acuerdo al mercado que inicialmente es afectado por la intervención de la autoridad. Los instrumentos analizados por Boyer son las operaciones de mercado abierto en el mercado monetario y las políticas comerciales en el mercado de bienes, consideradas, según el autor, sustitutos cercanos para variaciones en el tipo de cambio.

En Roper y Turnovsky (1980), el tema de la intervención óptima en el mercado cambiario es analizado en un marco de referencia que enfatiza la interacción entre las fluctuaciones cambiarias y el grado de intervención. Los resultados sugieren que una política óptima requiere, necesariamente, algún grado de intervención cuando las perturbaciones no están localizadas en un solo mercado (como en Boyer). Además, sus resultados son consistentes con la proposición de Mundell de que la política fiscal es impotente con tipos de cambio flexibles y perfecta movilidad de capitales.

Tanto el análisis de Boyer como el de Roper y Turnovsky incorporan el tradicional supuesto keynesiano de precios fijos. El análisis de políticas de intervención óptima en un contexto en el cual los precios se determinan en forma endógena ha sido considerado por Frenkel y Aizenman (1981), Turnovsky (1983) y Bhando (1985).

Frenkel y Aizenman presentan un modelo de una economía pequeña y abierta sujeta a dos tipos de perturbaciones: reales y monetarias. Adicionalmente se supone que prevalece la paridad del poder de compra, excepto para desviaciones aleatorias, y que la función objetivo es minimizar las pérdidas reflejadas en desviaciones del consumo corriente respecto de su valor planeado. En el caso de que la fuente de las perturbaciones esté asociada a shocks reales, los autores sugieren que “mayor será la conveniencia de fijar los tipos de cambio...”.

Este resultado está en abierto contraste con la literatura tradicional (véase Roper y Turnovsky (1980), Flood y Marion (1982) y Turnovsky (1983)). La discrepancia se debe fundamentalmente a diferencias en la función objetivo. En el caso de Frenkel y Aizenmann, la función objetivo enfatiza la variabilidad del consumo y, por lo tanto, la elección del grado óptimo de intervención no depende de la existencia de un producto variable como en los trabajos ya mencionados.

Una implicación interesante de este modelo es que al aumentar la participación de los bienes no transables en el gasto total, se reducen las ventajas asociadas a sistemas de tipo de cambio flotante. Esto proviene del hecho de que el cambio necesario en el nivel de
precios para una perturbación monetaria dada, cuando todos los bienes son transables, sólo puede lograrse a través de movimientos en el tipo de cambio. Sin embargo, a medida que aumenta la importancia relativa de los bienes no transables, la necesidad de flexibilidad en el tipo de cambio se ve reducida, debido a que los cambios requeridos en el nivel de precios se pueden lograr a través de cambios en el precio de los bienes no transables, sin necesidad de alterar el tipo de cambio. En contraste con Frenkel y Aizenmann, Turnovsky (1983) muestra que con respecto a las perturbaciones domésticas un tipo de cambio fijo (flexible) es óptimo para perturbaciones monetarias (reales). Un resultado interesante del modelo de Turnovsky es que la política óptima de intervención requiere exacerbar las fluctuaciones del tipo de cambio en algunos casos.

Recientemente, las políticas de intervención han sido discutidas en el contexto de modelos de dos o tres países. Aoki (1982 a, b) y Canzoneri (1982), entre otros, han investigado bajo qué condiciones dos países deben formar una unión económica y estabilizar sus tipos de cambio bilaterales. Una implicación de esta literatura es que modelos de dos países no proporcionan un marco adecuado de análisis, debido a que ignoran las interacciones entre los miembros de la unión y los no miembros. Finalmente, el problema que surge cuando los países llevan a cabo políticas independientes en economías interdependientes también ha sido explorado por varios autores (véase Aoki (1976), Allen y Kenen (1980) y Buiter y Eaton (1985), entre otros). Una conclusión general que surge de esta literatura, es que es esencial evitar beneficios asociados a la coordinación de políticas cuando el número de objetivos excede el número de instrumentos.

3. **Una economía pequeña y abierta**

Consideremos una economía abierta que sea lo suficientemente "pequeña" como para tomar en cuenta las tasas de interés y los precios externos exógenos. En cada período los agentes económicos realizan transacciones en dos tipos de mercados: el mercado de bienes y el mercado de capitales. Los bienes y activos externos son considerados, por los agentes domésticos, como sustitutos imperfectos de los bienes producidos domésticamente y los valores emitidos domésticamente. La política monetaria es dirigida a través de operaciones de mercado abierto y la tasa de interés doméstica está fija. En todos los mercados prevalece continuo equilibrio y se asumen expectativas racionales.

El modelo se resume en el siguiente conjunto de ecuaciones:

\[
y_t = \phi (p_t - p_{t-1}) \\
\phi > 0
\]

\[
m_t - c_t = ay_t + \gamma_1 (e^1_{t+1/t} - e^1_t) + \gamma_2 (e^2_{t+1/t} - e^2_t) + u_t
\]

\[
a > 0 \quad \gamma_1, \gamma_2 < 0 \quad u_t \sim N(0, \sigma_u^2)
\]

\[
b_t - c_t = by_t + \delta_1 (e^1_{t+1/t} - e^1_t) + \delta_2 (e^2_{t+1/t} - e^2_t) + v_t
\]

\[
b > 0 \quad \delta_1, \delta_2 < 0 \quad v_t \sim N(0, \sigma_v^2)
\]

\[c_t = \theta_0 p_t + \theta_1 (p^1_t + e^1_t) + \theta_2 (p^2_t + e^2_t) \]
\[\theta_0 + \theta_1 + \theta_2 - 1 \]
\[m_t + b_t = 0 \]
\[m_t = \rho_1 e^1_t \quad \text{o} \quad m_t = \rho_2 e^2_t \]
\[e^1_t - e^2_t = e^{12}_t \]

donde:

- \(y \) : producto real doméstico
- \(p \) : nivel de precios doméstico
- \(p^1 \) : nivel de precios del país 1
- \(p^2 \) : nivel de precios del país 2
- \(m \) : oferta nominal de dinero doméstico
- \(b \) : oferta nominal de bonos domésticos
- \(e^1 \) : precio en moneda doméstica de la moneda del país 1
- \(e^2 \) : precio en moneda doméstica de la moneda del país 2
- \(e^{12} \) : precio en moneda del país 1 de la moneda del país 2
- \(c \) : índice de precios al consumidor
- \(x_{t+s/t} \) : expectativas de \(x_{t+s/t} \) condicionadas a la información disponible en el tiempo \(t \)
- \(u \) : perturbaciones monetarias estocásticas
- \(v \) : perturbaciones financieras estocásticas

Todas las variables están expresadas como desviaciones logarítmicas con respecto a los valores de equilibrio de largo plazo.

La ecuación (1) especifica la oferta del producto doméstico. El producto depende positivamente de los movimientos no anticipados en el nivel de precios doméstico. Esta formulación se asemeja a una función de oferta del tipo de Lucas (1973), pero también puede ser motivada en términos de modelos con contratos salariales de mediano y largo plazo\(^2\).

La ecuación (2) especifica la demanda doméstica por dinero. La formulación utilizada aquí puede ser motivada de diversas formas. Por ejemplo, se puede suponer que los agentes domésticos mantienen dinero doméstico para realizar sus transacciones y además mantienen saldos líquidos en moneda extranjera para protegerse de una devaluación de la moneda doméstica. Alternativamente, uno puede pensar que la ecuación (2) es el resultado de comparar los beneficios de liquidez asociados a la mantención de saldos reales en moneda doméstica con las eventuales ganancias de capital asociadas a la mantención de saldos reales en monedas extranjeras\(^3\).

La ecuación (3) describe la demanda doméstica por bonos. Se asume que la demanda doméstica por bonos depende del producto real y la tasa esperada del retorno relativo entre los valores domésticos y los extranjeros.

\(^2\) Flood (1979) ha argumentado que tanto con comercio internacional y/o internacional la justificación de la ecuación (1) que proporciona Lucas (1973) no es apropiada. Fisher (1977), Gray (1976) y Canzoneri (1980) han derivado una ecuación de oferta similar en el contexto de modelos con contratos salariales negociados con algún rezago.

\(^3\) Véase Barro (1978) y Buiter y Eaton (1985) para una especificación similar de la demanda de dinero.
La ecuación (4) define el índice de precios al consumidor como un promedio ponderado del nivel de precios doméstico y los niveles de precios externos (expresado en términos de la moneda nacional).

La ecuación (5) postula que la política monetaria es dirigida a través de operaciones de mercado abierto.

La ecuación (6) especifica la política de intervención monetaria. Los cambios en la oferta de dinero están relacionados a los movimientos contemporáneos en el tipo de cambio doméstico\(^4\). La política de intervención puede ser expresada tanto en términos de \(e_t^1\) como \(e_t^2\). Como veremos más adelante, la elección entre \(e_t^1\) y \(e_t^2\) como guía para la política de intervención es, en general, irrelevante\(^5\).

La ecuación (7) es una condición de arbitraje en el mercado cambiario. Describe la relación entre los dos tipos de cambio domésticos endógenos y el tipo de cambio externo exógeno cuando se ha eliminado todo tipo de ganancia, que es producto del arbitraje entre monedas en los mercados cambiarios\(^6\).

Finalmente, se supone que las perturbaciones siguen un proceso estocástico con esperanza igual a cero y varianza finita.

4. **La solución vía expectativas racionales**

Para obtener la solución para las variables endógenas claves \(p_t\), \(e_t^1\), \(e_t^2\) se reduce el conjunto original de ecuaciones (1) – (7) a la siguiente ecuación matricial.

\[
\begin{bmatrix}
-(\theta_0 + a\phi) & (\rho - \theta_1 + \gamma_1) & (\gamma_2 - \theta_2) \\
-(\theta_0 + a\phi) & (\delta_1 - \theta_1 - \rho) & (\delta_2 - \theta_2) \\
0 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
p_t \\
e_t^1 \\
e_t^2
\end{bmatrix}
= \begin{bmatrix}
\gamma_1 e_{t+1}^1 + \gamma_2 e_{t+1}^2 / t - \phi a p_{t-1} + \theta_1 p_{t}^1 + \theta_2 p_{t}^2 + u_t \\
\delta_1 e_{t+1}^1 + \delta_2 e_{t+1}^2 / t - \phi b p_{t-1} + \theta_1 p_{t}^1 + \theta_2 p_{t}^2 + v_t \\
e_{t}^{12}
\end{bmatrix}
\]

\[(8)\]

\(^4\) Buiter y Eaton (1985) han demostrado que en el caso en que la única variable observada contemporáneamente sea el tipo de cambio, las reglas de intervención de la forma de ecuación (6) tienen la ventaja de proporcionar políticas consistentes en el tiempo.

\(^5\) Si el tipo de cambio externo permanece constante, los dos tipos de cambio \(e_t^1\) y \(e_t^2\) están restringidos a moverse en forma simétrica, como resultado de la condición de arbitraje resumida en la ecuación (7). De este modo, \(\Delta e_t^1 = \Delta e_t^2\) y junto con la ecuación (6) obtenemos:

\[\Delta m_{t+1} = \rho_1 = \Delta m_{t+2} = \rho_2.\]

En el texto, el parámetro de intervención es denotado por \(\rho = \rho_1 = \rho_2\).

\(^6\) Por ejemplo, si \(e_t^1 - e_t^2 > e_{t}^{12}\), es posible obtener beneficios simplemente comprando la moneda del país 2 al tipo de cambio doméstico. Luego esta moneda se utiliza para adquirir la moneda del país 1 al tipo de cambio \(e_{t}^{12}\). Finalmente, la moneda del país 1 es transformada en moneda doméstica al tipo de cambio doméstico \(e_t^1\).
La ecuación (8) representa la forma semirreduzida de la expresión para el nivel de precios doméstico y los tipos de cambio en términos de variables externas \((p_t^1, p_t^2, e_t^{12}) \) de perturbaciones estocásticas \((u_t, v_t) \) de las expectativas actuales de los futuros tipos de cambio \((e_{t+1/t}^1, e_{t+1/t}^2) \) y de las expectativas pasadas del nivel de precios corriente de la producción doméstica \((p_{t/-1}) \). Dado que \(m_t \) sólo responde al tipo de cambio corriente, todas las variables endógenas en nuestro modelo dependen, dadas las expectativas, solamente de las perturbaciones contemporáneas. Taylor (1977) ha mostrado, sin embargo, que modelos como éste, que incorporan la expectativa actual o pasada respecto del valor futuro de las variables endógenas, tienen un número infinito de soluciones en las cuales las variables endógenas dependen de la historia pasada completa de las variables exógenas, a no ser que el nivel de precios y los tipos de cambio fluctúen independientemente en el tiempo. A fin de determinar una solución única, Taylor ha sugerido un criterio de varianza mínima. De acuerdo a este criterio el modelo debe ser resuelto imponiendo la restricción de que la varianza de las variables endógenas relevantes sea minimizada. Este procedimiento, sin embargo, es bastante arbitrario, ya que no existe un mecanismo de mercado para asegurar que la varianza de algunas variables endógenas sea minimizada a través de la interacción de los agentes privados. Recientemente, McCallum (1983) ha propuesto un criterio de solución de estado mínimo en el cual no aparecen variables rezagadas. Este criterio también es arbitrario pero es más atractivo debido a su simplicidad. Para evitar la indeterminación que caracteriza a los modelos de expectativas racionales, el modelo se resuelve asumiendo que todas las variables endógenas se generan por el procedimiento estocástico más simple, consistente con expectativas racionales. De este modo, fijando \(e_{t+1/t}^1 = e_{t+1/t}^2 = p_{t/-1} = 0 \) en (8) las soluciones de forma reducida para las variables endógenas están dadas por las siguientes ecuaciones:

\[
p_t = \frac{\theta_1}{\Delta_1} (\gamma - \delta + 2\rho) p_t^1 + \frac{\theta_2}{\Delta_1} (\gamma - \delta + 2\rho) p_t^2 + \left\{ \frac{1}{\Delta_1} [\gamma - \theta + \rho] b - [\delta - \theta - \rho] a \right\} e_t^{12} - \frac{1}{\Delta_1} (\delta - \theta - \rho) u_t + \frac{1}{\Delta_1} (\gamma - \theta + \rho) v_t \tag{9}
\]

\[
e_t^1 = \frac{1}{\Delta_1} (a - b) \theta_1 \phi p_t^1 + \frac{1}{\Delta_1} (a - b) \theta_2 \phi p_t^2 + \frac{1}{\Delta_1} [(\theta_0 + a\phi) (\delta_2 - \theta_2) - (\theta_0 + b\phi) (\gamma_2 - \theta_2)] e_t^{12} - \frac{1}{\Delta_1} (\theta_0 + b\phi) u_t + \frac{1}{\Delta_1} (\theta_0 + a\phi) v_t \tag{10}
\]

\[
e_t^2 = \frac{1}{\Delta_1} (a - b) \theta_1 \phi p_t^1 + \frac{1}{\Delta_1} (a - b) \theta_2 \phi p_t^2 + \frac{1}{\Delta_1} [(\theta_0 + b\phi) (\gamma_1 - \theta_1 + \rho) - (\theta_0 + \theta\phi) (\delta_1 - \theta_1 - \rho)] e_t^{12} - \frac{1}{\Delta_1} (\theta_0 + b\phi) u_t + \frac{1}{\Delta_1} (\theta_0 + a\phi) v_t \tag{11}
\]

donde

\[
\Delta_1 = (\theta_0 + a\phi) (\delta - \theta - \rho) - (\theta_0 + b\phi) (\gamma - \theta + \rho)
\]
\[
\delta = \delta_1 + \delta_2
\]
\[
\gamma = \gamma_1 + \gamma_2
\]
\[
\theta = \theta_1 + \theta_2
\]
5. **Políticas de intervención cambiaria óptima**

Con el objeto de derivar un criterio de optimalidad en el proceso de formulación de políticas de intervención cambiaria, es necesario especificar una función objetivo. El objetivo que se postula con mayor frecuencia y el que se adopta en este trabajo es la estabilización del producto real. Tal objetivo es equivalente a minimizar la siguiente expresión\(^7\)

\[
\text{minimizar } H = \sum (p_t - p_{t-1})^2
\]

(12)

En principio, el grado óptimo de intervención puede obtenerse minimizando \(H\) con respecto a los parámetros de intervención. Dada la complejidad del modelo, la expresión general para una política de intervención óptima resulta ser extremadamente engorrosa y no muy clarificadora. En cambio, enfocaremos nuestra atención en algunos casos específicos.

Las ecuaciones (9)-(11) forman la base para nuestro análisis de intervención óptima del mercado cambiario.

5.1 **Perturbaciones monetarias domésticas**

Un **shock** positivo en la demanda doméstica por dinero \((u_t > 0)\) provoca inicialmente una reducción en el nivel de precios doméstico, en el producto real \(y\) y en los tipos de cambio a fin de eliminar los incipientes excesos de demanda por dinero generados por la perturbación. En el mercado de bonos la caída en los tipos de cambio genera un exceso de oferta. En este caso, la política adecuada es expandir la oferta de dinero a través de operaciones de mercado abierto de compra de bonos. El aumento del **stock** de la oferta de dinero contrarresta la caída inicial en el producto real \(y\), simultáneamente, elimina el exceso de oferta en el mercado de bonos. De (9) se puede ver que el nivel de precios \(p_t\), y, de este modo el producto real puede ser estabilizado completamente fijando \(\rho = \delta - \theta < 0\).

Esta política asegura que \(y_t = p_t = 0\) y luego, \(\rho^2 = \rho^2 = 0\).

Este resultado está en abierto contraste con la mayor parte de la literatura sobre intervención en el mercado cambiario. Un resultado estándar en la literatura es que el óptimo global en presencia de perturbaciones domésticas es fijar \(\rho = \infty\), de modo que el tipo de cambio permanezca fijo (véase Flood y Marion (1982), Boyer (1978), Turnovsky (1983) y Eaton y Turnovsky (1984)).

La optimalidad de los tipos de cambio fijos, en presencia de perturbaciones monetarias domésticas, sólo es válida en modelos en que los activos domésticos y externos son sustitutos perfectos. En ausencia de perturbaciones externas, y si el tipo de cambio es fijo, entonces también el nivel de precios doméstico debe ser fijado de acuerdo a la relación de paridad del poder de compra. Entonces, de la ecuación (1) se desprende que si el nivel de precios doméstico está fijo, y si no existen shocks de productividad, el producto real doméstico también debe mantenerse fijo. Sin embargo, si los bonos domésticos y externos son sustitutos imperfectos, un sistema de tipo de cambio fijo es inconsistente con un equilibrio simultáneo en el mercado de dinero y en el de bonos y la estabilidad

\(^7\) Puesto que no existen perturbaciones de oferta en el modelo, este criterio es equivalente a minimizar la varianza del producto alrededor del nivel de producto de largo plazo con información completa.

del producto8. La intervención óptima requiere una respuesta finita de la oferta de dinero con el fin de reducir las fluctuaciones en el tipo de cambio. Puesto que movimientos en el tipo de cambio inducidos por el mercado absorben parte del \textit{shock} en el mercado de dinero, ellos no deben ser completamente eliminados.

5.2 \textit{Una perturbación en el mercado de bonos}

Un aumento transitorio en la demanda por bonos induce inicialmente una caída en el nivel de precios doméstico, en el producto y en los tipos de cambio. En el mercado monetario, como resultado de estos movimientos, se genera un exceso de oferta, que es la contrapartida del exceso de demanda provocado inicialmente en el mercado de bonos. En este caso, la estabilización del producto requiere de una política que valide el aumento en la demanda por bonos domésticos. Esto se logra a través de operaciones de mercado abierto de venta de bonos al público. Específicamente, la política óptima de intervención consiste en fijar un valor al parámetro de intervención igual a $\rho = -(\gamma - \theta) > 0$.

Esta política tiende a reforzar la caída inicial de los tipos de cambio y, por tanto, la estabilización del producto se logra exacerbar las fluctuaciones de los tipos de cambio. Este resultado es consistente con otros trabajos recientes sobre el tema, que sugieren la existencia de un potencial conflicto entre la estabilidad del producto y la estabilidad del tipo de cambio nominal.

5.3 \textit{Perturbaciones en los precios externos}

A partir de la ecuación (9) se puede observar que la política de intervención óptima es independiente del origen de las perturbaciones en los precios externos. Ya sea para cambios en el precio del bien del país 1 o del bien del país 2, el producto se estabiliza completamente fijando $\rho = \frac{\delta - \gamma}{2} \geq 0$.

Este resultado tiene interesantes implicaciones para la elección de una moneda de referencia en la economía doméstica. Este tema se desarrolla con mayores detalles en la siguiente sección.

5.4 \textit{Perturbaciones en los tipos de cambio externos}

En este caso la política óptima de intervención consiste en fijar

$$\rho = \frac{(\delta - \theta) a - (\gamma - \theta) b}{a + b} \geq 0.$$

La política óptima de intervención puede estar asociada a una política monetaria que tiende a reducir las fluctuaciones de los tipos de cambios ($\rho < 0$) o eventualmente puede requerir cambios en la oferta monetaria que refuerzan los movimientos iniciales en los tipos de cambio ($\rho > 0$).

8 Con tipo de cambio fijo, e imponiendo la condición de que el producto sea constante, un \textit{shock} positivo de exceso de demanda monetaria requiere un incremento en el \textit{stock} de oferta de dinero. Debido a que las autoridades monetarias están limitadas a las operaciones de mercado abierto y esto, a su vez, crea un exceso de demanda en el mercado de bonos.
6. **La elección de una moneda de referencia**

Esta sección compara el desempeño hipotético de una economía pequeña y abierta, con tipo de cambio fijo, bajo sistemas de fijación cambiaria alternativos.

El tema de la elección de una moneda de referencia ha comenzado a recibir una atención creciente en la literatura (véase Connolly (1983)). En el contexto de nuestro modelo, la elección de una moneda de referencia óptima puede analizarse en términos de los efectos sobre la estabilidad económica de dos criterios alternativos de fijación de paridad cambiaria: (i) Fijar el valor de la moneda doméstica en términos de la moneda del país 1, o (ii) Fijar el valor de la moneda doméstica en términos de la moneda del país 2.

Resolviendo el modelo consistente de las ecuaciones (1) - (7) y sustituyendo la ecuación (6) con (i) \(e_t^1 = e \), o (ii) \(e_t^2 = e \), tenemos:

Si \(e_t^1 = e^{-1} \), entonces

\[
Pt = -\frac{2\theta_1}{\Delta}p_t^1 - \frac{2\theta_2}{\Delta}p_t^2 - \frac{2}{\Delta}e^{-1} - 2\frac{\theta_2}{\Delta}e_t^{12} - \frac{(a + b)}{\Delta}s_t - \frac{1}{\Delta}(u_t - v_t)
\]

(13)

y si \(e_t^2 = e^{-2} \), entonces

\[
Pt = -\frac{2\theta_1}{\Delta}p_t^1 - 2\frac{\theta_2}{\Delta}p_t^2 - 2\frac{\theta}{\Delta}e^{-2} - \frac{2\theta_1}{\Delta}e_t^{12} - \frac{(a + b)}{\Delta}s_t - \frac{1}{\Delta}(u_t - v_t)
\]

(14)

donde: \(\Delta = (\theta_0 + a\phi) + (\theta_0 + b\phi) \).

Los resultados resumidos en las ecuaciones (13) y (14) proporcionan varias implicancias en lo referente a la elección de una moneda de referencia. Primero, la elección de una moneda de referencia en el resto del mundo es irrelevante en el caso de que las perturbaciones estén localizadas en los mercados domésticos y/o correspondan a perturbaciones externas asociadas exclusivamente a fluctuaciones en los precios en el resto del mundo.

Este resultado es una implicación de la condición de arbitraje (ecuación (7)), que restringe a ambos tipos de cambio a moverse en forma simétrica. Segundo, si las perturbaciones externas están asociadas a movimientos en el tipo de cambio externo (\(e_t^{12} \)), entonces una economía pequeña debe vincular su moneda a la moneda del país que produce el bien que tiene una mayor ponderación en la canasta de consumo de los agentes domésticos. Una variación en el tipo de cambio externo provocará movimientos en \(e_t^1 \) o \(e_t^2 \), dependiendo de la moneda a la que se haya vinculado la economía doméstica. Si \(e_t^1 \) permanece fijo, entonces el precio doméstico del bien del país 2 fluctuará en el mismo sentido que \(e_t^2 \). El efecto del cambio en el precio doméstico del bien del país 2, sobre el nivel de precios doméstico, dependerá de la importancia relativa del producto del país 2 en la canasta de consumo doméstica. Mientras menor (mayor) sea la participación del producto del país 2 (1) en el gasto doméstico, menor será el cambio inducido en el nivel de precios doméstico y, por tanto, menor será el efecto sobre la estabilidad económica de la economía doméstica.
En resumen, la elección de una moneda de referencia es relevante sólo en la medida que los shocks externos estén asociados a fluctuaciones del tipo de cambio en el resto del mundo.

7. EL RESTO DEL MUNDO

En las secciones anteriores se discutió el impacto sobre la estabilidad económica de una economía pequeña y abierta, de fluctuaciones en los precios externos y el tipo de cambio en el resto del mundo. Aunque estas variables son exógenas para una economía pequeña, ellas se determinan en forma endógena en el resto del mundo, reflejando, entre otras cosas, las diversas perturbaciones que ocurren allí. Esta sección extiende el análisis previo, examinando las fuentes de las perturbaciones en el resto del mundo en forma explícita.

El resto del mundo está compuesto por dos economías. Cada una de ellas utiliza operaciones de mercado abierto para fijar su tasa de interés nominal y las políticas cambiarias en cada país consisten en intervenciones esterilizadas. Finalmente, se supone que el resto del mundo enfrenta perturbaciones reales y monetarias y que las expectativas se forman racionalmente. Otros supuestos simplificadores serán introducidos a medida que se presenta el modelo.

La estructura del resto del mundo se puede resumir en las siguientes ecuaciones:

\[y_t^1 = \lambda (p_t^1 - p_{t/n-1}^1) \quad (\lambda > 0) \]

\[y_t^2 = \lambda (p_t^2 - p_{t/n-1}^2) \]

\[y_t^1 = \alpha (p_t^1 - p_t^2 - \varepsilon_t^1) + \beta (y_t^1 + y_t^2) + \eta_t + d_t \quad (\alpha < 0, \beta > 0, \eta_t \sim N(0, \sigma_\eta^2), d_t \sim N(0, \sigma_d^2)) \]

\[y_t^2 = -\alpha (p_t^1 - p_t^2 - \varepsilon_t^2) + \beta (y_t^1 + y_t^2) + \eta_t - d_t \]

\[m_t^1 - c_t^1 = y_t^1 + \gamma (\varepsilon_t^{12,1-t} - \varepsilon_t^{12}) \quad (\gamma < 0) \]

\[m_t^2 - c_t^2 = y_t^2 - \gamma (\varepsilon_t^{12,1-t} - \varepsilon_t^{12}) \]

\[b_t^1 - b_t^2 - \varepsilon_t^{12} = \delta (\varepsilon_t^{12,1-t} - \varepsilon_t^{12}) + w_t \quad (\delta < 0) \]

\[c_t^1 = \theta_1 p_t^1 + \theta_2 (p_t^2 + \varepsilon_t^2) \quad (\theta_1 + \theta_2 = 1) \]

\[c_t^2 = \theta_1 (p_t^1 - \varepsilon_t^1) + \theta_2 p_t^2 \]

\[m_t^1 + m_t^2 + b_t^1 + b_t^2 = 0 \]

\[m_t^1 - m_t^2 = (b_t^2 - b_t^1) + \psi \varepsilon_t^{12} \]
donde:
\(y_j \) = producto real del país \(j \)
\(m_j \) = oferta monetaria del país \(j \)
\(b_j \) = oferta de bonos del país \(j \)
\(p_f \) = nivel de precios del país \(j \)
\(c_f \) = índice de precios al consumidor del país \(j \)
\(e^{12} \) = tipo de cambio nominal (medido en términos de unidades de la moneda del país 1 (por unidad de la moneda del país 2)
\(n_t \) = perturbación estocástica en la demanda por ambos bienes
\(d_t \) = traslado estocástico en la demanda por bienes
\(w_t \) = perturbación estocástica en el mercado de bonos
\(x_{t+s|t} \) = expectativas de \(x_{t+s} \) condicionadas a la información disponible en el tiempo \(j = 1, 2 \).

Todas las variables están expresadas como desviaciones logarítmicas respecto de los valores de equilibrio de largo plazo.

La estructura económica del resto del mundo es similar a la descrita en la sección 2 para una economía pequeña y abierta. Cada país se caracteriza por poseer una función de oferta del tipo de Lucas ((15) y (16)). Las ecuaciones (17) y (18) representan la demanda mundial por ambos productos. La demanda por cada bien depende de los precios relativos y del producto real prevaleciente en el resto del mundo. Las ecuaciones (19) y (20) describen el sector monetario de cada país, asumiendo que todo el dinero doméstico es mantenido por los residentes domésticos. El mercado de bonos ha sido agregado con los residentes de ambos países. La ecuación (21) señala que el exceso de demanda por bonos del país 1 relativo a los bonos del país 2 depende de la tasa de retorno relativo esperada entre los bonos del país 1 y los del país 2. El parámetro \(\delta \) parametriza el grado de sustitutibilidad entre ambos bonos. Los índices de precios al consumidor de cada país son definidos por (22) y (23), respectivamente. La ecuación (24) señala que las políticas monetarias de cada país están restringidas a operaciones de mercado abierto que mantienen constante el nivel de riqueza mundial. La ecuación (25) especifica una regla de comportamiento de la oferta monetaria, a través de la cual cada país usa operaciones de mercado abierto para fijar su tasa de interés nominal. Además, (25) describe la política de intervención como una función de las desviaciones observadas del tipo de cambio con respecto a su nivel de equilibrio de largo plazo.

De la ecuación (21) podemos observar que el tipo de cambio depende solamente de la oferta relativa de bonos entre el país 1 y el país 2. En particular, un incremento en la oferta relativa de bonos del país 1 tenderá a aumentar el tipo de cambio nominal \(e^{12} \). Por lo tanto de (25) un valor positivo del parámetro de intervención (\(\psi > 0 \)) implica una política "a favor de la corriente", que exacerba las fluctuaciones del tipo de cambio. Por otra parte, un \(\psi < 0 \) reduce las fluctuaciones del tipo de cambio nominal que significa entonces una política "en contra de la corriente". En el caso de que \(\psi > 0 \), una apreciación de la moneda del país 1 inducirá a una compra de bonos de ese país, y viceversa.

Finalmente, algunas palabras respecto a la simetría que ha sido impuesta sobre los coeficientes en los dos países. La razón para imponer esta simetría es para enfatizar las implicancias para una economía pequeña de la existencia de autoridades monetarias independientes en el resto del mundo, y para mostrar cómo la coordinación, o falta de ella, en la formulación de políticas económicas entre países grandes afecta el desempeño económico de economías pequeñas. Las diferencias en la estructura económica no son una condición necesaria para la existencia de autoridades monetarias independientes en
el resto del mundo. La existencia de asimetrías en la estructura económica entre países puede afectar algunos resultados, pero el mensaje básico de este trabajo debería permanecer intacto.

8. Coordinación de políticas en el resto del mundo

La solución del modelo del resto del mundo para las variables endógenas \((p^1, p^2 y e^{12})\) está dada por

\[
\begin{align*}
p^1_t &= \frac{1}{\Delta_2} \left\{ \left[(\lambda - 2\alpha)(\psi - \delta + 2\gamma - 1) + 2\alpha\lambda \right] \eta_t \right. \\
& \quad + \frac{1}{\Delta_2} \left[(\lambda - 2\beta\lambda)(\psi - \delta + 2\gamma - 1) \right] d_t - \frac{1}{\Delta_2} \left[\alpha(\lambda - 2\beta\lambda) \right] w_t \tag{23} \\
p^2_t &= \frac{1}{\Delta_2} \left[(\lambda - 2\alpha)(\psi - \delta + 2\gamma - 1) + 2\alpha\lambda \right] \eta_t \\
& \quad - \frac{1}{\Delta_2} \left[(\lambda - 2\beta\lambda)(\psi - \delta + 2\gamma - 1) \right] d_t + \frac{1}{\Delta_2} \left[\alpha(\lambda - 2\beta\lambda) \right] w_t \tag{24} \\
e^{12}_t &= \frac{1}{\Delta_2} \left[2\lambda(\lambda - 2\beta\lambda) \right] d_t + \frac{1}{\Delta_2} \left[(\lambda - \alpha - \beta\lambda)^2 - (\alpha - \beta\lambda)^2 \right] w_t \tag{25}
\end{align*}
\]

donde

\[
\Delta_2 = \left[(\lambda - \alpha - \beta\lambda)^2 - (\alpha - \beta\lambda)^2 \right] (\psi - \delta + 2\gamma - 1) + 2\alpha\lambda(\lambda - 2\beta\lambda).
\]

De (23) – (25), es evidente que el parámetro de intervención \((\psi)\) desempeña un rol fundamental en la determinación de los niveles de precios en cada país y el tipo de cambio entre las dos economías que componen el resto del mundo. Este parámetro, a su vez, es el resultado de políticas coordinadas de intervención en el resto del mundo y puede ser considerado el instrumento por el cual las economías en el resto del mundo tratan de estabilizar el nivel de producto real. A continuación vamos a examinar las políticas coordinadas de intervención desde la perspectiva del resto del mundo, suponiendo que la estabilidad del producto es el objetivo de las autoridades en cada país.

8.1 Perturbaciones financieras

Si la única perturbación en el resto del mundo está localizada en el mercado de bonos, la política óptima de intervención es fijar \(\psi = \infty\) de modo que el tipo de cambio permanezca fijo. La intuición detrás de este resultado es la siguiente: bajo un régimen de tasas de interés fijas, el tipo de cambio depende de las demandas relativas por los bonos de cada país (véase la ecuación (21)). Un traslado de la demanda por bonos del país 1 hacia los del país 2, tiene el efecto de depreciar la moneda del país 1. Esta depreciación, a su vez, es transmitida al resto del mundo a través de cambios que afectan los vectores de variables nominales y reales en todos los mercados. Sin embargo, este proceso puede ser limitado al mercado de bonos por medio de un cambio apropiado en la oferta relativa de bonos del país 1 y el país 2. En particular, se requiere una intervención coordinada
de parte de las autoridades monetarias en ambos países con el objeto de reducir simultáneamente la oferta de bonos del país 1 e incrementar la oferta de bonos del país 2. De este modo, la política óptima puede ser expresada, alternativamente, en términos del parámetro de intervención \(\psi = \infty \) o en términos de los movimientos requeridos en la oferta relativa de bonos \(\Delta b_1 - \Delta b_2 = w_1 \).

8.2 Perturbaciones en el mercado de bienes

Si la principal fuente de fluctuaciones en el producto en el resto del mundo está dada por traslados en la demanda desde el bien producido en el país 2 hacia el bien producido en el país 1, entonces la política óptima de intervención corresponde a \(\psi = -2(\gamma - \delta - 1) \geq 0 \).

Esta política estabiliza los precios y el producto real en cada país a través de cambios en la oferta relativa de bonos. El efecto sobre la estabilidad del tipo de cambio, sin embargo, es ambiguo. Este resultado es de interés, desde la perspectiva de una economía pequeña y abierta, debido a que la coordinación de políticas en el resto del mundo puede tener un efecto desestabilizador sobre el tipo de cambio en él \(e_1^{*2} \) y en esa medida puede, eventualmente, tener un efecto negativo sobre la estabilidad económica de la economía pequeña. Un escenario plausible asociado a una política de desestabilización sería más o menos el siguiente: el aumento en la demanda por el producto del país 1 provoca inicialmente un aumento en el producto del país 1. Esto crea un exceso de demanda en el mercado monetario, lo que a su vez provoca una apreciación de la moneda del país 1. Esta apreciación traslada la demanda hacia el bien producido en el país 2. Sin embargo, si la demanda por dinero es muy sensible a variaciones en el tipo de cambio, la apreciación de la moneda del país 1 será pequeña y, por lo tanto, predominará el traslado inicial en la demanda por el producto del país 1, causando un aumento en el producto del país 1 y una reducción de él en el país 2. Con el objeto de reducir estos movimientos en el producto de ambos países, se necesita reforzar los movimientos en el tipo de cambio, a fin de compensar el traslado inicial hacia el producto del país 1. Si la apreciación inicial de la moneda del país 1 es insuficiente, las autoridades monetarias en el resto del mundo deben forzar la caída en el tipo de cambio a través de reducciones en la oferta relativa de bienes del país 1.

9. Políticas de estabilización en el resto del mundo y sus efectos sobre la estabilidad de una economía pequeña

Los resultados de la sección anterior pueden ser utilizados para investigar los efectos de políticas alternativas de intervención en el resto del mundo, sobre la estabilidad del producto real en una economía pequeña y abierta.

En el Cuadro 1 se resumen los efectos para la economía pequeña de políticas cambiarias alternativas en el resto del mundo. Los casos extremos en que \(\psi = \infty \), \(\psi = 0 \) corresponden a sistemas con tipo de cambio fijo o sistemas con tipo de cambio flexible, respectivamente. Por otro lado, un valor de \(\psi = \psi^* \) describe una política cambiaria óptima que estabiliza el producto real en el resto del mundo. Finalmente, \(\sigma_\gamma^2 \) se refiere a la varianza del producto en la economía pequeña.

Del Cuadro 1 podemos ver que las políticas óptimas de intervención en el resto del mundo, ante la presencia de perturbaciones financieras estocásticas, son también óptimas desde la perspectiva del país pequeño. Si los shocks financieros son la fuente principal de
las fluctuaciones en el resto del mundo, entonces, como ya vimos, se debe llevar a cabo una política vigorosa de intervención con el fin de eliminar las fluctuaciones en el tipo de cambio. En este caso un tipo de cambio fijo provee completa estabilidad al resto del mundo, y al mismo tiempo elimina dos fuentes importantes de fluctuaciones para la economía pequeña (precios externos y tipo de cambio externo).

CUADRO 1

LOS EFECTOS DE TIPOS DE CAMBIO ALTERNATIVOS EN EL RESTO DEL MUNDO SOBRE UNA ECONOMÍA PEQUEÑA Y ABIERTA

\[\sigma_y^2 \]

A. Perturbaciones financieras \((w_t)\)

\[\psi = 0 \quad \left\{ \frac{\theta_2 - \theta_1}{\Delta_1 \Delta_2} A(\lambda - 2\beta\lambda)\alpha + \frac{B}{\Delta_1 \Delta_2} \left[(\lambda - \alpha - 2\lambda)(\alpha - \lambda) \right] \right\}^2 \sigma_w^2 \]

\[\psi - \psi^* = \infty \quad 0 \]

B. Perturbaciones de la demanda \((d_t)\)

\[\psi = 0 \quad \left\{ \frac{(\theta_1 - \theta_2)}{\Delta_1 \Delta_2} \left(\lambda - 2\beta\lambda \right) (2\gamma - \delta - 1) + \frac{B}{\Delta_1 \Delta_2} \left[2\lambda(\lambda - 2\beta\tau) \right] \right\}^2 \sigma_d^2 \]

\[\psi = \infty \quad \left\{ \frac{(\theta_1 - \theta_2)}{\Delta_1 \Delta_2} \left(\lambda - 2\beta\lambda \right) \right\} \left\{ \frac{B}{\Delta_1 \Delta_2} \left[(\lambda - 2\beta\lambda)(\alpha - \beta\lambda) \right] \right\} \sigma_d^2 \]

\[\psi = \psi^* \quad \left\{ \frac{B}{\Delta_1 \Delta_2} \right\} \sigma_d^2 \]

\[\Delta_1 = (\theta_0 + a\phi)(\delta - \theta - \rho) - (\theta_0 + b\phi)(\gamma - \theta - \rho) \]

\[\Delta_2 = \left\{ \left(\lambda - \alpha - 2\beta\lambda \right)(\alpha - \beta\lambda) \right\} (\psi - \delta + 2\gamma - 1) + 2\alpha(\lambda - 2\beta\lambda) \]

\[A = (\gamma - \delta + 2\rho) \]

\[B = (\delta_2 - \theta_2)(\gamma_1 - \theta_1 + \rho) + [\gamma_2 - \theta_2(\delta_1 - \theta_1 - \rho)] \]

Por otra parte, una perturbación en el mercado de bienes en el resto del mundo puede conducir a un conflicto de intereses entre las dos economías grandes y la economía pequeña y abierta. Una política óptima de intervención en el resto del mundo puede requerir una política que tienda a exacerbar las fluctuaciones en el tipo de cambio externo. El efecto neto de esta política sobre la estabilidad del producto de la economía pequeña es ambiguo. La política de intervención en el resto del mundo estabiliza los
precios externos pero desestabiliza el tipo de cambio externo y, por lo tanto, puede tener eventualmente efectos negativos sobre la estabilidad del producto real en la economía pequeña.

10. **Comentarios finales**

 Este trabajo ha examinado las condiciones para una formulación óptima de políticas de intervención cambiaria, enfatizando la distinción entre economías grandes y pequeñas. Adicionalmente, se analizan las implicaciones para una economía pequeña y abierta de políticas de coordinación en el resto del mundo.

 Debido a que los principales resultados de este trabajo fueron discutidos en la introducción, no los repetiremos aquí. En su lugar, puede ser útil discutir algunas de sus posibles limitaciones.

 Primero, los resultados específicos para los efectos de políticas de intervención derivados aquí dependen, hasta cierto punto, de la existencia de un régimen de tasa de interés fija. En un marco de análisis más general, el régimen debe ser el resultado de un proceso general de optimización.

 Segundo, el modelo presentado aquí ha restringido las perturbaciones únicamente a ser ruido blanco. En la práctica, las perturbaciones varían en origen y naturaleza. Mientras que algunas perturbaciones no son anticipadas, otras son esperadas, y mientras que algunas pueden ser transitorias, otras pueden ser percibidas como trasladados permanentes. Parece razonable asumir que el diseño óptimo de políticas de intervención dependerá tanto de la naturaleza como del origen de las perturbaciones.

 Tercero, el modelo del resto del mundo se basa en el supuesto de que la estructura económica, y por ello las elasticidades son las mismas en todos los países. Una extensión natural sería la de comparar las implicancias, para los efectos de coordinación de política, de la existencia de asimetrías en la estructura económica en los países.

APÉNDICE

El modelo para una economía pequeña

Los modelos discutidos en este trabajo fueron expresados en términos de desviaciones logarítmicas con respecto a los valores de equilibrio de largo plazo. Este apéndice presenta algunos de los detalles del proceso de linearización logarítmica, en el contexto del modelo para una economía pequeña.

El modelo básico se puede resumir de la siguiente manera:

\[Y_t = \dot{Y} + \phi(P_t - P_{t-1}) \]
(A.1)

\[\log(M_t) - C_t = aY_t + \gamma_1 [(E_{t+1/t}^1 - E_t^1) + (i_t^1 - i_t)] + \gamma_2 [(E_{t+1/t}^2 - E_t^2) + (i_t^2 - i_t) + U_t] \]
(A.2)

\[\log(B_t) - C_t = bY_t + \delta_1 [(E_{t+1/t}^1 - E_t^1) + (i_t^1 - i_t)] + \delta_2 [(E_{t+1/t}^2 - E_t^2) + (i_t^2 - i_t) + V_t] \]
(A.3)
C_t = \theta_0 P_t + \theta_1 (P_t^1 + E_t^1) + \theta_2 (P_t^2 + E_t^2) \tag{A.4}

\log (M_t + B_t) = \log (\bar{W}) \tag{A.5}

\log (M_t) = \log (\bar{M}) + \rho (E_t^1 - \bar{E}^1) \tag{A.6}

E_t^1 - E_t^2 = E_t^{12} \tag{A.7}

Todas las variables, a excepción de i, i^1, i^2, M, B, y W, están expresadas en logaritmos. Las definciones de las variables se encuentran en el texto con la excepción de W, i, i^1, e i^2 que denotan el stock de riqueza nominal, y las tasas de interés nominales, domésticas y externas, respectivamente. Ya que supusimos un régimen con tasa de interés fija, tanto en el país como en el extranjero, e i_t = i_t^1 = i_t^2, los términos (i_t^1 - i_t) y (i_t^2 - i_t) desaparecen de las ecuaciones (2) y (3) del texto.

Ahora nos dedicaremos a la derivación de la ecuación (5) de la sección 3. De la ecuación (A.6) el stock de riqueza nominal es

M_t + B_t - \bar{W} \tag{A.8}

Calculando el diferencial total de (A.8) con respecto a los valores de equilibrio de largo plazo

\frac{\Delta M_t}{M} \frac{\bar{M}}{\bar{W}} + \frac{\Delta B_t}{B} \frac{\bar{B}}{W} = 0 \tag{A.9}

Asumiendo que en el equilibrio de largo plazo M = B = 1/2 W, la ecuación (9) puede ser reescrita como

\frac{1}{2} \left(\frac{\Delta M}{M} + \frac{\Delta B}{B} \right) = 0 \tag{A.10}

o

m_t + b_t = 0 \tag{A.11}

como en el texto; donde m_t = \Delta M_t/\bar{M} y b_t = \Delta B_t/\bar{B}

La extensión de este resultado al modelo de dos países es trivial.

REFERENCIAS

