Measuring Geopolitical Risk*

Dario Caldara† Matteo Iacoviello‡

July 11, 2017

PRELIMINARY

Latest version at https://www2.bc.edu/matteo-iacoviello/gpr_files/GPR_PAPER.pdf

Abstract

We present a monthly index of geopolitical risk (GPR index) based on a tally of newspaper stories that contain terms related to geopolitical tensions, and examine its evolution and effects since 1985. The GPR index spikes around the Gulf War, after 9/11, during the 2003 Iraq invasion, during the 2014 Russia-Ukraine crisis, and after the Paris terrorist attacks. Overall, the GPR index serves as a good proxy for movements in geopolitical risk over time. At the macro level, we find that: (1) Higher geopolitical risk leads to a decline in real activity and is associated with increases in the VIX and higher corporate credit spreads; (2) higher geopolitical risk leads to lower stock returns; (3) higher geopolitical risk leads capital to flows away from emerging economies and towards advanced economies.

*We thank Alessandra Bonfiglioli, Nick Bloom, Nathan Converse, Chris Erceg, Bo Sun and seminar participants at the Federal Reserve Board, the Stanford Institute for Theoretical Economics, the Chengdu International Macro-Finance Conference, and the CEF Conference in New York. Joshua Herman, Lucas Husted, Andrew Kane, Aaron Markiewitz provided outstanding research assistance. All errors and omissions are our own responsibility. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.

†Federal Reserve Board of Governors. Email: dario.caldara@frb.gov
‡Federal Reserve Board of Governors. Email: matteo.iacoviello@frb.gov
1 Introduction

Major geopolitical events are often regarded as setting the stage for radical changes in the business cycle and in financial markets, and geopolitical risks are often cited by central banks officials, the financial press, and business investors as key determinants of investment and spending decisions.\(^1\) As a tell-tale sign of the importance of geopolitical risks, several companies profitably publish ratings, indexes, and intelligence reports containing detailed and colorful information on where it is safe, or dangerous, to do business. A Google search of the term “geopolitical risk map” returned 161,000 hits as of May 2016, with the first 20 results containing the names of at least ten different companies, insurance agencies, and organizations that publish and sell indexes measuring geopolitical risk across countries, regions and over time.\(^2\)

However, virtually all available indexes of geopolitical risk suffer from a variety of shortcomings that make them hardly usable for applied research. First, these indexes are often qualitative measures of geopolitical risk and are constructed in a subjective way, using a few colors, number scales from 1 to 5, or letter grading scales that are meant to tell the risky places and times apart from the safe ones. Second, these indexes either vary little over time, or they are available for only a short period. A notable example, the Doomsday Clock,\(^3\) measures the countdown to a possible global catastrophe, with fewer minutes to midnight measuring higher risk, but the value of this index has changed only six times in the last twenty years. Third, when these indexes are quantitative, they are constructed by combining other variables which are meant to react to, rather than measure, geopolitical risks, such as gold, the VIX, the dollar index, and other financial market indicators.

In this paper we develop a monthly, quantitative index of global geopolitical risk—the GPR index—that aims at providing a complement to many available, qualitative indexes of geopolitical risk. Drawing on the methodology pioneered by Saiz and Simonsohn (2013) and Baker, Bloom, and Davis (2016), the index is constructed by counting the occurrence of words related to geopolitical tensions in leading

\(^1\)See for instance Greenspan (2002) and Carney (2016). In the 2017 Bank of England systemic risk survey, 61 percent of market participants cited geopolitical risk as one of the risks to the UK financial system (see http://www.bankofengland.co.uk/publications/Documents/other/srs/srs2017h1.pdf). In a Wells Fargo/Gallup May 2017 survey of more than 1,000 investors, 75 percent were very or somewhat worried about the impact of the various military and diplomatic conflicts happening around the world, ranking geopolitical risk ahead of political and economic uncertainty (see http://www.businesswire.com/news/home/20170613005348/en/Wells-FargoGallup-Survey-Geopolitical-Risks-Greater-Threat).

\(^2\)For example, one can find, among the first 20 results of the search, the following companies providing businesses with the intelligence to make the right decisions in world of uncertainties: Control Risks Online, Aon plc, Marsh-McLennan, Verisk Maplecroft, CSO Online, Euler Hermes, Risk Advisory, Strategic Risk.

\(^3\)The Bulletin of the Atomic Scientists webpage has more details about the Doomsday Clock.
international newspapers. The index is plotted in Figure 1. It spikes during the Gulf War and during the 2003 invasion of Iraq.\footnote{Throughout the paper, we refer to historical events by adopting the naming convention followed by the Wikipedia entry for that event.} It peaks around 9/11. More recently, it spikes up both during the Ukraine/Russia crisis, and around the Paris terrorist attacks, and during the escalation of the Syrian conflict in April 2017. An historical version of the index —dating back to 1899 and spanning over 120 years— reaches its highest values at the beginning at the two World Wars, and at the onset of the U.S. involvement in them.

We study the relationship between the GPR index and business cycles and financial market movements. We find that a typical spike in the GPR —sized to match the jump after major episodes of higher geopolitical risk— depresses U.S. and advanced economies’ industrial production by about 1 percent, and leads to a tightening in various measures of financial conditions. Most importantly, we find that what matters about geopolitical events is the uncertainty surrounding them: a version of the index that separates “geopolitical threats” from “geopolitical acts” shows that threats produce much more powerful effects than acts.

An important upshot of the index is that it quantifies episodes of geopolitical tensions that could hardly be predicted ahead of time and that are, by and large, exogenous to world economic conditions. The index – as well as an historical version of the index dating back to 1899 and spanning over 120 years – is available at https://www2.bc.edu/matteo-iacoviello/gpr.htm.

2 Construction of the Geopolitical Risk Index

2.1 Basics

The goal of this paper is to understand the macroeconomic and financial consequences of major global political events and risks such as wars, terrorism, and regional political tensions. In recent years, these types of events and risks have been described by the press as “geopolitical,” which motivates our decision to call the index the geopolitical risk (GPR) index.

The journalistic use of the term “geopolitical risk” does not meet any scholarly definition. In fact, a formal definition of geopolitical risk is not available, but rather seems to be an extension of “political risk” to major global events. Political risk is itself a fuzzy concept, and its definition has substantially evolved over history, with one definition referring to “political risk” as the risk an investment’s returns could suffer as a result of political changes or instability in a country (Sottilotta, 2013).
We define geopolitical risk as the risk associated with wars, terrorist acts, and tensions between states that affect the normal course of domestic politics and international relations. Both wars and terrorist events aim at achieving political or ideological goals through the use of violence, although they differ in scope, methods, and type of actors. Political tensions, even when initially confined inside one country, can also create geopolitical instability, to the extent that they increase the probability of future conflicts. The index aims at measuring, throughout history, these risks and associated instability. In practice, we construct the GPR index by counting the occurrence of words related to geopolitical tensions in leading newspapers. In particular, the GPR index reflects automated text-search results of the electronic archives of 11 national and international newspapers: The Boston Globe, Chicago Tribune, The Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, Los Angeles Times, The New York Times, The Times, The Wall Street Journal, and The Washington Post. We calculate the index by counting the number of articles related to geopolitical risk in each newspaper for each month (as a share of the total number of news articles). The index is then normalized to average a value of 100 in the 2000-2009 decade, so that a reading of 200, for instance, indicates that newspaper mentions of geopolitical risk in that month were twice as frequent as they were during the 2000s. The search identifies articles containing references to any of the six categories of words reported in Table 1. We arrive at this set of words after a pilot audit study of articles mentioning geopolitical tensions – see the description of the audit in the next section –, and after isolating the most common unigrams and bigrams in geopolitics textbooks. In doing so, we verify that the defining elements of geopolitics concern territory, countries, nations, and leadership, and that defining elements of geopolitical risk center around the risk of wars and terrorism. Building on this characterization, we construct a set of keywords that give us an index that is robust, sensible, and easily interpretable. As shown in Table 1, the first four categories of words are related to geopolitical threats and tensions, while the last two categories are related to geopolitical events and acts (of negative nature: the start of a war is part of geopolitical risk).

5 A monthly reading of 100 for the index corresponds to about 350 articles per month containing terms related to geopolitical risk.

6 The companion dataset reports the total number of articles across newspapers in each month. The number of articles is trendless around 70,000 since the early 1990s. For one representative newspaper, this corresponds to about 200 articles per day, of which about one in 300 mentions, on average, terms related to geopolitical risk. As a comparison benchmark, one in 500 articles mentions the Beatles, and one in 300 articles mentions the Federal Reserve.

7 For instance, the book “Introduction to Geopolitics” (Flint, 2016) contains 48,759 bigrams, of which the most common ones are “geopolit code”, “world leader”, “unit[ed] states”, “world leadership”, “war [on] terror”, “modelski model”, “geopolit agent”, “cold war”, “soviet union”, “world war”, and “foreign polic[y]”. The book “The Geopolitics Reader” (Dalby, Routledge, and Tuathail, 2003), which is a compendium of 39 geopolitics essays written by different authors, contains 91,210 bigrams, of which the most common ones are “unit[ed] states”, “cold war”, “foreign polic[y]”, “nation secur[ity]”, “world war”, “world order”, “nation[al] state”, “gulf war”, “war II”, and “nuclear weapon”.

the index, while the end of a war is not).\footnote{We refrain from including in the search words containing proper nouns, except for “United States” and the names of the four largest continents. We do so because we want to guard our search against the possibility that terms related to geopolitical risks may cease to be such for a limited period of time. For instance, although the name “Adolf Hitler” may have correctly identified geopolitical risks in the 1930s, it is far more often associated today to books, movies and historical accounts of the World War II, and is best left out of the searches. The same is often true of many political leaders or figures once they die, or are jailed, or retire from office.} Group 1 includes keywords associated with explicit mentions of geopolitical risk, as well as mentions of military-related tensions involving large regions of the world and a U.S. involvement. Group 2 includes keywords directly related to nuclear tensions. Groups 3 and 4 include mentions related to war threats and terrorist threats, respectively. Finally, Groups 5 and 6 aim at capturing press coverage of actual geopolitical events (as opposed to just risks) which can be reasonably expected to lead to increases in geopolitical uncertainty, such as terrorist acts or the beginning of a war. We do this for two reasons. First, actual “negative”geopolitical events are often associated with higher risk. Hence, searching directly for events rather than risk can help obtaining a more precise identification of the timing of some risk-inducing shocks. Second, in assessing the impact of geopolitical risk, we want to control for the direct impact that the event itself might have. For this reason, in Section 2.3 we create two sub-indexes that measure threats and acts separately.

Figure 1 presents the benchmark raw index. The index is characterized by several spikes corresponding to key geopolitical events which led to higher tensions. The first spike is recorded in April 1986 and it corresponds to the US bombing of Libya and the terrorist escalation that led to it. The second spike happens during the Kuwait invasion and the subsequent Gulf War. The index spikes again at the beginning of 1998, during a period of escalating tensions between the United States and Iraq. It then stays low until 9/11, when it spikes above 300. The index reaches its maximum during the 2003 invasion of Iraq. Since 2003, the index rises in correspondence of major terrorist events in Europe, like the March 2004 Madrid bombing, the July 2005 London bombing, and the November 2015 Paris terror attacks. The index also rises in 2014, amidst rising geopolitical tensions in Ukraine and Iraq, as well as during the rise of ISIS.

Figure 2 elaborates further on the contribution of each component to the index. Nuclear threats are disproportionately more important prior to the end of the Cold war, and gradually subside after 1989. By contrast, terror threats trend higher over the sample period, spiking after 9/11, and remaining at elevated levels ever since. Interestingly, while “war threats” and “war acts” appear to move somewhat in sync throughout the sample, mentions of “terrorist threats” seem to rise in proportion to mentions of actual “terrorist acts” since 9/11.
2.2 What Are We Measuring?

A crucial aspect that concerns the measurement of geopolitical risk is that exposure to such risk varies both geographically and by sector of the economy. The index captures geopolitical events and risks as perceived and chronicled in the press in English-speaking countries, and in particular in the United States: to construct the index we use eight American, two British, and one Canadian newspaper. Moreover, one of the search categories measures bilateral regional tensions between the United States and other regions of the world.\(^9\)

At the same time, geopolitical events that involve the United States and their interests abroad have global implications. Furthermore, the newspapers we search have wide geographical coverage. Hence, the index should be also a good proxy for global geopolitical risk.

Additionally, the use of press coverage has the potential to induce fluctuations in (or exceedingly high levels of) the GPR index even if the underlying geopolitical risk factors remain constant due to changes in geopolitical-related risk aversion of the public and state-dependent bias in news coverage. For example, the high levels in the years following 9/11 (constructed from this U.S.–centric selection of newspapers) may potentially reflect more public fear (towards geopolitical tensions) than actual risk during that period. This is, however, exactly what we want to capture.

2.3 Geopolitical Threats vs. Geopolitical Acts

Figure 3 decomposes the index in two subindexes: the GPT index (GPR Threats) and the GPA index (GPR Acts). The GPR index captures a convolution of shocks to first and higher order moments of the distribution of geopolitical events. Spikes in risk often coincide with the realization of big events. We attempt to disentangle the direct effect of geopolitical events from the effect of pure geopolitical risks by constructing two indexes: Geopolitical threats (GPT): Search categories 1 to 4; Geopolitical acts (GPA): Search categories 5 and 6.

2.4 Long-span Historical GPR Index

Using a methodology similar to that of the benchmark index, we construct a long-span monthly GPR index dating back to 1900. We restrict the newspapers’ coverage to only three journals for which we can retrieve data all the way back to the beginning of the 20th century, namely the New York Times.

\(^9\)In Caldara, Iacoviello, and Markiewitz (2017), we construct a country-specific geopolitical risk index – again, as perceived by the same English–speaking press for 16 emerging countries, drawing on mentions of geopolitical tensions in each country.
Chicago Tribune, and the Washington Post. Aside from using a smaller set of newspapers and a slightly larger set of synonyms (mostly added to capture shifts in the usage of particular words),\footnote{Specifically, we add the words ((war OR military) N/3 (crisis OR uncertain*)) OR “state of war” OR “declaration of war” to the search terms.} the long-span index closely mimics the benchmark index for the period in which the coverage overlaps.

Figure 4 displays the monthly historical index. Even here, every major spike in the index can be associated with episodes of rising geopolitical tensions. The index stays elevated during the two world wars, and peaks at the onset of both of them. Figure 5 further illustrates how the components in the measure of historical geopolitical risk have evolved over the last 115 years. Early in the sample, the index rises and stays high during World War I and World War II, and phrases directly related to the conflict itself dominate the index. The index stays at high levels between the 1950s and the 1980s, at a time when the threat of a nuclear war and rising geopolitical tensions between countries become more prevalent than wars themselves. Since the 2000s, terrorism events have come to dominate the index, alongside rising bilateral tensions among countries. Indeed, the index reaches the highest values at the start of World War I, the start of World War II, and around 9/11.

3 Auditing the Index

The construction of any news-based index raises obvious concerns about accuracy and bias. In this section we explain how we address these concerns. To preview the results, human reading of 5,000 newspapers articles as well as comparison to external proxies confirms that the index accurately captures movements in geopolitical risk.

3.1 Human Reading of the Articles

We read and code articles drawn the newspapers in our sample from 1985 through 2016.\footnote{As in Baker, Bloom, and Davis (2016), the construction of the indexes only requires count of articles that contain predetermined expressions. By contrast, we need the full-text articles to carry out the audit. We could not access the full-text articles for the Financial Times, which limits the audit study to 10 out of 11 newspapers.} Our goal is to ensure that the index is an accurate, reliable and stable measure of geopolitical concerns. For this to happen, the keywords must be more likely to be employed when geopolitical concerns materialize than when they do not, and must be sufficiently varied to minimize sampling error. Importantly, the keywords do not need to be detailed enough to capture all articles related to geopolitical risk, but should create a proxy for underlying movements in geopolitical risk that maximizes the correlation between
the index and rising geopolitical tensions, that is the phenomenon we want to capture.

The universe of newspaper articles used to construct the index contains about 65,000 news articles each month (sample U), of which only a small fraction contains references to geopolitical issues.\footnote{This number corresponds to about 200 articles a day, on average, for each of the 11 newspapers in the sample.} To narrow this list down, we sample from this universe a subset of articles that are more likely to be classified as $\text{GPR}^H = 1$ by our computer algorithm. This subset (sample E) contains about 8,000 articles per month—that is, 15\% of the articles in sample U—, and is constructed by extracting articles that contain any of the following words: geopolitics, war, military, terrorism/t. While the first word enters the universe almost by definition, the other three have come to dominate the language and the practice of geopolitics over the years. Wars, military actions and terrorism all represent violent means for states and organizations to claim and control territories, to achieve political ends, and to extend the boundaries of their influence.\footnote{The choice of words is also supported by an analysis of the most common unigrams found in textbooks and books on the subject of geopolitics. For instance, the most common word roots in Colin Flint’s textbook “Introduction to Geopolitics” (Flint, 2016) are “geopolit”, “war”, “nation”, “terror”, “polit”, and “countri”, and “global”. Similarly, the most common word roots in Samuel Huntington’s classic book on the ‘Clash of Civilizations’ (Huntington, 1997) are “civil”, “war”, “cultur”, “politi”, “power”, “econom”, “societi”, “conflict”.} The first audit proceeds as follows. We select 50 months at random from the universe of all months that contribute to the index, and for each month we select 50 articles at random from the approximately 8,000 articles in E corresponding to that month. Together with a team of research assistants, and aided by a detailed audit guide,\footnote{The audit guide is available at \url{https://www2.bc.edu/matteo-iacoviello/gpr_files/audit_guidelines_GPR.pptx}.} we read and code each of these 2,500 articles as $\text{GPRE}^H = 1$ if they mention high or rising geopolitical tensions, and $\text{GPRH}^H = 0$ otherwise. Based on this analysis, 60.4\% percent of the articles in E discuss high or rising geopolitical risks, with the remaining 39.6\% percent being false positives.\footnote{The upshot of this search is that it allows to obtain an estimate of the proportion of articles that measure high or rising geopolitical risks on average, even if the index only includes a fraction of these articles. This estimate is close to 9 percent, as 15\% of articles belong to set U, and 60 percent of the latter are true positives.} Additionally, the fraction of false positives is very volatile, with a monthly standard deviation of 17\%, thus indicating that a very broad search is likely to be contaminated by high noise-to-signal ratio. For instance, the fraction of false positives is 78\% in March 1991, when newspaper coverage of the Gulf War is very extensive, but a substantial majority of articles cites declining tensions, peace initiatives after Saddam Hussein’s withdrawal from Kuwait, and the importance of the U.N. mandate to maintain peace and stability in the region. Figure A.2 in the Appendix compares the benchmark index with the naive GPRE index constructed counting the relative frequency of all articles mentioning any of the four keywords that enter the set E, as well as with a naive index subtracting the word peace from the occurrence of the words war and terrorism.
Based on the results of this first audit, we scan the full text of the abstracts of the 2,500 articles sampled from set \mathcal{E} in order to identify differences between those that are coded GPRE$^H = 1$ –set \mathcal{E}^1– and those that are coded as GPRE$^H = 0$ –set \mathcal{E}^0–. Specifically, we use text analytics techniques to identify the bigrams that are more likely to show up in \mathcal{E}^1 than in \mathcal{E}^0. This process helps us to refine the set of words that are part of the benchmark GPR index, as discussed in the previous section. Specifically, we compare articles across sets \mathcal{E}^1 and \mathcal{E}^0 and note phrases (eventually listed in Table 1) that are far likely to identify articles belonging to set \mathcal{E}^1 than to set \mathcal{E}^0, as well as phrases that are often associated with false positives. For instance, most false positives occur at times of anniversaries (such as the centenary of the First World War in 2014), upon death of historical figures, at the time of books’ publication, movies’ releases and other art events that are connected to wars, terrorism, and other episodes of important historical relevance.16 We repeat this process and refine the index until additional filters and search adjustments bring only modest improvements in the error rate. For instance, the first audit shows that the error rate is high towards the end of 1989, when many newspaper articles written during with the fall of communism in Eastern Europe and the rise to power of Gorbachev in the Soviet Union herald a new era of peace and reduced geopolitical threats. Although in some instances these articles feature words such as “risks” and “threats” in proximity of words such as “reduced” or “diminished,” or phrases such as “the threat of war is over,” we were unable to develop simple text filters that would significantly reduce the error rate.17

In the second and final audit, we read articles from the set \mathcal{G} of articles that belong to the benchmark (computer–generated) GPR index. The set \mathcal{G} contains about 280 articles per month, that is, about 0.4% of the articles in the sample \mathcal{U}. As before, we read 50 articles from 50 different months, for a total of 2,500 articles, and classify them as either belonging to set \mathcal{G}^1, if they discuss high or rising geopolitical tensions, or as belonging to set \mathcal{G}^0, if they do not. About 87 percent of the articles in the sample \mathcal{G} are articles that an intelligent human would classify as mentioning high or rising geopolitical risks. For the 50 months that we sample, the correlation between the human-audited GPR index –that is, the product of GPR index and the fraction of articles belonging to \mathcal{G}^1 in that month– and the benchmark GPR index is 0.98. The error rate –the fraction of articles belonging to set \mathcal{G}^0– is essentially uncorrelated with GPR itself as well as with other macroeconomic variables. Finally, we find a high correlation (72 percent) between the GPR index and the human-audited naive GPRE index, that is, the naive index

16 The set of words that are highly likely to signal false positives are “civil war”, “human rights”, the word “war” in close proximity of the word “end” (end N/2 war), the phrase “air force”, the words “movie”, “film”, “museum”, “anniversary”, “memorial” and “art”. We exclude from the benchmark index articles containing these phrases.

17 See e.g. The Meaning of Berlin, by Flora Lewis, published in the New York Times on Nov 26, 1989.
scaled by the fraction of sampled articles in each month that discuss true geopolitical tensions.

3.2 Comparison with Broader and Narrower Measures

As additional checks, we consider a broad index, a narrow index and a simple index. These indexes—shown as shares of total articles by month, rather than indexed to 100—are presented in Figure 6. As the figure shows, the index is robust to the inclusion and exclusion of specific phrases and synonyms.

The broad index combines the keywords in Table 1 with bigrams that a machine learning algorithm separately applied to sets \mathcal{E}_1 and \mathcal{E}_0 signals as very likely indicators of rising geopolitical tensions. Specifically, we run two separate, automated text analyses of all the articles coded in the audit as either GPRE$^H = 1$ or GPRE$^H = 0$, and identify the most recurrent bigrams in both sets. Using Bayes’ rule, we compute the odds ratio of an article being coded as GPRE$^H = 1$ instead of GPRE$^H = 0$ given that it contains each bigram, and add the ten bigrams (out of the 50 most recurring ones) with the highest ratio to the list of search terms.\(^{18}\) While the resulting search criteria double the number of articles mentioning geopolitical risks, the resulting index is broadly in line with the benchmark one (correlation 0.92), thus suggesting that the index is robust to the exclusion of expressions that are likely to be associated with rising geopolitical tensions.

The narrow index excludes articles containing keywords which, in the human audit, were often correlated with false positives. As before, we identify bigrams that are more likely than not to appear in set of articles that contains false positives. We then exclude from the index all the articles containing any of these bigrams.\(^{19}\) The resulting search reduces by approximately 15 percent the number of articles mentioning geopolitical risks, but the resulting index is virtually indistinguishable from the benchmark one (correlation 0.997), thus suggesting that the index is sufficiently robust to the inclusion of words

\(^{18}\) Prior to calculating the bigrams, we filter out stopwords and proper names (including names of countries, cities, and political organizations). For each bigram, we can calculate the probability that the bigram signals a GPRE$^H = 1$ article using Bayes’ rule. For instance, the bigram “military aid” appears 25 times in the GPRE$^H = 1$ set, and 2 times in the GPRE$^H = 0$ set. Given that the GPRE$^H = 1$ and the GPRE$^H = 0$ sets contain 101,174 and 74,554 bigrams respectively, the unconditional probability that an article containing “military aid” discusses rising geopolitical risks is 0.90. The keywords included in the broad index are “military presence”, “military assistance”, “military aid”, “peace process”, “international terror”, “administration official”, “nuclear weapon”, “weapon mass”, “mass destruction”. The tenth keyword, “terrorist threat”, is included but redundant because it is also part of the benchmark index. These bigrams were found to have odds of belonging to set \mathcal{E}_1 instead of set \mathcal{E}_0 of more than 70 percent.

\(^{19}\) Our benchmark index already excludes expressions that in our first audit were often associated with false positives, like “civil war” and “human rights”, as well as words like movie, museum, anniversary, memorial and art. The additional bigrams that exclude an article from the count in the narrow index are “air force”, “death penalty”, “national guard”, “supreme court”, “justice department”, “enemy combatant”, “military commission”, “military tribunal”, “military civilian”, “military loss”, “defense department”, “chief of staff”, “law enforcement”, “war crime”. These bigrams were found to have odds of belonging to set \mathcal{E}_1 instead of set \mathcal{E}_0 of less than 40 percent.
that are likely to be associated with false positives.

Finally, we construct a simple index that economizes on search terms, and is close in spirit to the methodology of Baker, Bloom, and Davis (2016). The simple index is based on articles that, instead of belonging to any of the six potential search categories, contain at least one word from each of two sets of terms: the set S_1, including \{war OR military OR terrorism OR geopolitical\}, and the set S_2, containing \{risk* OR concern* OR tension* OR uncertain* OR threat*\}. The correlation between the benchmark index and the simple GPR index is sizable, at 0.89. Although the principle of parsimony would make this index appealing, we prefer the benchmark index because, among other things, it showed a lower error rate in pilot audits, and because it affords a natural decomposition into several search subcategories that is not permitted with the simple index.

3.3 Comparison with Alternative Measures of Geopolitical Risks

Several studies have resorted to various proxies in order to construct quantitative measures of risk that speak to concerns specific to wars or terrorist-related events. A widely used database is the ICB annual database, which provides detailed information on 447 major international political crises that occurred over the period 1918–2006. This database has been widely used in the political science literature, as well as in studies on war and economics. One example is the work by Berkman, Jacobsen, and Lee (2011), who use the ICB database to create a crisis index that adds up, for each year, the total number of crises. Not surprisingly, such index is a very crude measure of geopolitical risk. The top panel of Figure 7 compares the historical GPR index with the count of international crises per month according to the ICB database (to reduce high–frequency noise, both indexes are plotted at quarterly averages). It seems somewhat heroic to argue that the mere count of international crises correlates well with geopolitical instability. For instance, the value of the index is below its historical average before and during the Second World War, thus failing to pass even the most basic of smell tests.

The middle panel of Figure 7 compares our index to two alternative indicators that offer a different perspective on the threats coming from geopolitical violence. It plots deaths due to terrorist attacks (1) in the world and (2) in the United States and Europe combined. The latter are likely to receive more press coverage in the English-speaking press. Both series appear to be uninformative about overall movements in GPR, although, as expected, they spike together around 9/11. However, the somewhat

20 The data on terrorism-related deaths largely exclude wars, but the distinction appears mostly semantic as the dividing line between wars and terrorism has been blurred at least since 9/11. The data are from the Global Terrorism Database (GTD), which is an open-source database including information on terrorist events around the world.
elevated levels of the GPR index in 2015 and 2016 appear to reflect rise in the worldwide number of deaths due to terrorism, alongside the heightened media attention on the conflicts in the Middle East.

The bottom panel of Figure 7 compares the GPR index with the National Security component of the Economic Policy Uncertainty Index by Baker, Bloom, and Davis (2016). Like our measure, the national security EPU spikes during the Gulf War, after 9/11, and during the Iraq war. However, the GPR index seems to better capture other spikes in geopolitical uncertainty which are missed by the national security EPU. The correlation between the two measures is 0.69, a high but not extreme value. We believe that there is no reason to expect that the correlation between the two measures is higher than that. After all, the national security component EPU still captures uncertainty about policy responses to geopolitical events, which is a different concept from the uncertainty generated by the geopolitical events themselves.21.

3.4 Relation to Popular Measures of Economic Uncertainty

Figure 8 compares the benchmark index with other popular measures of uncertainty: VIX, gold, the EPU index of Baker, Bloom, and Davis (2016). As the Figure shows, there appears to be little comovement between our measure and these uncertainty measures.

In the top panel, the GPR index and the VIX share two common spikes in 1991, at the time of the Gulf War, and in 2001, after the 9/11 terrorist attacks. However, in both cases the correlation seems to run from our index to the VIX, rather than the other way round. A similar set of considerations applies in the middle panel, when comparing our index to the EPU index. Finally, there appears to be little correlation between the GPR index and the price of gold.

3.5 Additional Robustness Check

For the sake of robustness, we check the conditions advocated by Saiz and Simonsohn (2013) that must hold to obtain useful internet-based proxies for variables, such as geopolitical risk over time, that are otherwise difficult to measure. These checks are described and discussed in the Appendix.

21 Another database is the Militarized Interstate Disputes Dataset, which records all instances of when one state threatened, displayed, or used force against another. This dataset is only available with several years delay and is only available annually. See http://cow.dss.ucdavis.edu/data-sets/MIDs. Other papers have performed news-searches looking for early warning signals for wars. See for instance Chadeaux (2014).
4 Macroeconomic Effects of Geopolitical Risk

4.1 Overview

In this section, we investigate the macroeconomic and financial effects of geopolitical risk.

4.2 Global Effects

We first provide an encompassing overview of the global macroeconomic effects of geopolitical risk by estimating a monthly VAR from 1985M1 through 2015M12 which includes a broad set of real and financial variables. The model consists of eight variables: (1) the GPR index; (2) the option-implied volatility on the S&P 100 stock futures index constructed by the Chicago Board of Option Exchange (VIX); (3) the log of US industrial production; (4) the log of advanced economies industrial production; (5) the log of emerging economies industrial production; and 6) the log of the Brent price of oil expressed in real terms dividing by the U.S. CPI index; (7) Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity; (8) the Standard and Poors 500 index, expressed in real terms.\(^\text{22}\) The IP indexes, the real price of oil, and the stock market index are linearly detrended prior to estimation. All VAR models presented in the paper are estimated using Bayesian techniques. We impose a Minnesota prior on the reduced-form VAR parameters by using dummy observations as in Del Negro and Schorfheide (2011). The resulting specification, which includes a constant, is estimated using six lags of the endogenous variables.\(^\text{23}\)

We identify the structural shocks by using a Cholesky decomposition of the covariance matrix of the VAR reduced-form residuals, ordering the GPR index first. The ordering implies that the GPR index reacts contemporaneously only to its own shock. Hence, any contemporaneous correlation between the macro variables and the GPR index reflects the effect of the GPR on the macro variables. While the characteristics of the GPR index discussed in Section 2 lend support to this assumption, later we explore robustness to alternative Cholesky orderings.

The solid lines in Figure 9 show the median impulse responses to an exogenous increase in the GPR index of 153 points, while the shaded areas represent the corresponding 68-percent pointwise credible bands. The shock equals the average change in the index following the nine episodes of largest increases

\(^{22}\) Caldara, Cavallo, and Iacoviello (2016) provides details on the construction of the IP indexes for advanced and emerging economies.

\(^{23}\) The vector of hyperparameters of the Minnesota prior is \(\lambda = [1, 3, 1, 1, 1]\). We use the first year of the sample as a training sample for the Minnesota prior. All the results reported in the paper are based on 10,000 draws from the posterior distribution of the structural parameters, where the first 2,000 draws were used as a burn-in period.
in geopolitical risk. On the real side, IP in various geographical regions responds quickly to the increase in geopolitical risk. The decline in the U.S. bottoms out at 0.7 percent after about 1 year, and converges slowly back to trend. The dynamic response of IP in advanced economies is broadly similar. IP in emerging economies contracts too, bottoming out at 0.8 percent below trend 8 months after the shock, somewhat faster than in the U.S. and in the Advanced Economies.

The rise in the GPR index induces a small and short-lived increase in overall global risk, as proxied by the VIX. By contrast, the response of the stock market is economically and statistically significant, dropping by 2.5 percent on impact and remaining below trend for over a year. Similarly, a rise in GPR induces a persistent increase in corporate credit spreads, which peak at 10 basis points 6 months after the shock. Finally, the increase in the GPR leads to a decrease in oil prices, which bottom out at 8 percent below trend after 6 months. This result stands in contrast with much of the conventionally held view that higher geopolitical risk drives up oil prices persistently, a view that might reflect a selective memory that confounds all geopolitical tensions with “oil supply shocks driven by geopolitical tensions in the Middle East.” The evidence from the VAR supports the result that higher geopolitical risk creates recessionary effects, which impacts negatively on oil demand and prices.

All told, the VAR evidence presented above is suggestive of sizeable recessionary effects of an increase in GPR.

4.3 Threats vs Acts

Next, we evaluate the difference between innovations in the two broad components of the GPR index, GPT – Threats Index – vs GPA – Acts Index. We do so by estimating the same VAR of before, replacing the GPR index with these two components. We are interested in the effects of shocks to these two subcomponents. A natural identification scheme is one where we assume that GPT innovations do not affect GPA contemporaneously, whereas GPA innovations affect GPT contemporaneously.

The impulse responses to the GPT and GPA shocks are shown in Figure 10. The upshot of these impulse responses is that they lend support to the old idea, attributed to London financier Nathan Rothschild, that one should buy on cannons and sell on trumpets. An innovation to GPT (the pure risk component of the index) leads to a small but short-lived rise in GPA, and produces large and protracted recessionary effects, as well as a decline in stock prices. By contrast, a positive shock to

These episodes are U.S. bombing of Lybia in 1986, the Kuwait Invasion, the Gulf War, the 1998 Iraq Disarmament Crisis, 9/11, risk of Iraq invasion in 09/2002, the 2005 London bombings, the Russian annexation of Crimea, and the 2015 Paris terrorist attacks.
the GPA leads to a small but short-lived decline in economic activity, whereas the stock market rises sharply one month after the shock.

The different responses to “threat” and “act” shocks are broadly consistent with the notion that threat shocks depress asset prices and economic activity because they reveal information about new adverse negative events that are not fully diversifiable, thus raising risk premia. By contrast, the “act” component of the shock may lead to a resolution of the uncertainty around a particular set of events, as well as to a coordinated policy response that ends up giving protection on the worst possible outcomes.25

4.4 Robustness

The 9/11 terrorist attacks are the episode that induced the largest increase in the index (the index rose to its highest level with the Iraq war two years later, but from already elevated levels). Moreover, 9/11 is potentially associated with a structural break in the index, which remained persistently elevated after the terrorist attacks converging towards a higher level compared to the first part of the sample. The 9/11 terrorist attacks were not a typical geopolitical event, as they targeted the world financial center and provoked direct financial effects by forcing the closure of the U.S. stock market and other major financial institutions. Additionally, the 9/11 attacks had also a great impact on news coverage of terrorism and more broadly of geopolitical events outside the U.S..

Figure 11 reports the impulse responses to a GPR shock of a VAR model that includes two separate dummies for September and October 2001,26 and another VAR model uses a censored version of the GPR index. We construct the censored GPR index by setting to zero all observations on the GPR where the time series of residuals from an AR(1) regression of the GPR increases by less than 1.68 standard deviations. The resulting index, which consists of 9 episodes, captures large increases in geopolitical risk, and gives no weight to small variations in the index.

The impulse responses to a GPR shock in the model with the 9/11 dummies and the censored GPR are very similar to the baseline model. By censoring the GPR index, a GPR shock induces a very temporary increase in geopolitical risk, which is zero 3 months after the shock. The lack of persistence translates into a more muted response of the stock market index and of corporate spreads.

Finally, in Figure 12 we explore the robustness to an alternative Cholesky ordering where we order the GPR index after the VIX and oil prices, that is, last in the block of fast-moving variables. By

25See Pastor and Veronesi (2013) for a model of political uncertainty and risk premia.
26We included a dummy for both September and October because news coverage of the 9/11 terrorist attacks and especially their geopolitical implications was higher in October than in September.
construction, the impact response of the VIX is zero. This exclusion restriction lowers the entire dynamic path of the VIX, which declines marginally after the shock. However, despite the decline in the VIX, a shock to GPR has the same recessionary effects as in the benchmark model. Hence, this result highlights that while one transmission channel of geopolitical risk could be higher global volatility, it has a significant independent effect.

In Figure A.3 in the Appendix, we show that the VAR results are robust to including the EPU in the specification.

4.5 Geopolitical Risk and Capital Flows

We now present additional evidence on the economic consequences of changes in global geopolitical risk, by showing how geopolitical risks affect capital inflows in a sample of advanced and emerging economies. The procyclical and volatile nature of capital flows makes them a leading policy concern, especially in economies which rely heavily on external funds. We use country-level, quarterly data on capital inflows from the IMF’s Balance of Payments Statistics database. The sample consists of 22 advanced economies, 23 emerging economies and the United States.

Defining $y_{i,t} = \frac{\text{inflows}_{i,t}}{GDP_{i,t}}$, our baseline specification tests whether movements in geopolitical risk have any explanatory power for gross capital inflows, and takes the form:\footnote{As discussed in Ahmed and Zlate (2014), whether to focus on net capital inflows or gross capital inflows is an open question. Conceptually, global geopolitical risk should more directly relevant for the investment decisions of foreign investors. For this reason, we focus on gross capital inflows. Note that gross capital inflows measure flows of both debt and equity capital from foreign investors and lenders, and that capital withdrawals are subtracted.}

$$y_{i,t} = \alpha_i + \rho_1 y_{i,t-1} + \beta GPR_t + \Gamma X_t + u_{i,t},$$

where α_i are country fixed effects and X_t is a vector of control variables. We estimate equation (1) separately for emerging economies, advanced economies excluding the United States, and the United States. Throughout, we assume that the effect of GPR on the capital inflows is equal within each group of countries. Table 2 reports the results for a specification that includes VIX to control for global economic risk, as well as lagged GDP growth, following the work of Ahmed and Zlate (2014). As expected, the coefficient on the VIX is negative across all specifications. Additionally, the coefficient on lagged GDP growth is positive.

Comparing columns (1) and (2) of the table, an increase in GPR has different effects on capital inflows in emerging versus advanced economies. In emerging economies, a 1 standard deviation increase
in the GPR reduces capital inflows by 0.34 percentage points, while an equally sized increase in the VIX reduces capital inflows by 1.11 percentage points. By contrast, for advanced economies increases in VIX reduces capital inflows, whereas increases in GPR lead to an increase in capital inflows. In column (3), the effect of changes in geopolitical risk in the United States is modest, and not statistically different from zero.

4.6 Geopolitical Risk and Stock Returns

In this section, we examine the reaction of country-specific stock market returns to changes in geopolitical risk. We do so both for the full sample covered by the historical index, and for the most recent period covered by the benchmark index. The baseline specification echoes the work of Berkman, Jacobsen, and Lee (2011), who do a similar analysis using data from the International Crisis Database looking at the effects of the number of crises on world stock returns. In particular, we run the following set of country-by-country regressions

\[r_{i,t} = \mu_i + \alpha_i GPRSHOCK_t + \varepsilon_{i,t}, \]

(2)

where \(r_{i,t} \) is stock market return in country \(i \) in month \(t \), and \(GPRSHOCK_t \) is the residual of an autoregressive process of order 1 estimated for the GPR index. The results are seen in Table 3. In line with expectations, geopolitical risks have a strong negative impact on stock returns in virtually all advanced economies. Using the benchmark sample, an increase in geopolitical risk of 100 units reduces world stock returns, on average, by 1.23 percent. As shown by the Table, the effects are significant both in the pre– and post–World War II sample.

5 Conclusions

We construct a monthly index of geopolitical risk. This index captures an important dimension of uncertainty: the risk that events might happen that disrupt the normal and peaceful course of relations across states, populations, and territories.

It is often said that most of the enduring progress of many advanced economies in the last century owes to peace, democracy, and the creation of institutions for the collective action of countries in response to social and economic threats, and that collective prosperity and economic development preserve peace, cooperation and goodwill among countries. Our index captures one of the extreme risks
posed by humans to such progress.
References

Appendix

A Construction of the Index

The benchmark index is constructed by running a search query in the ProQuest Newsstand Database. We search the archives of the following newspapers. Boston Globe (start date availability: 1/1/1985); Chicago Tribune (1/1/1985); The Daily Telegraph (4/1/1991); Financial Times (5/31/1996); The Globe and Mail (1/1/1985); The Guardian (8/18/1992); Los Angeles Times (1/1/1985); The New York Times (1/1/1985); The Times (4/18/1992); Wall Street Journal (1/1/1985); and The Washington Post (1/1/1985). For our benchmark index, we run the search query shown in Figure A.1. The index is the number of articles returned by the search, divided by the total number of articles, indexed to 100 in the 2000–2009 decade. We use the search tips and wild cards discussed at https://proquest.libguides.com/proquestplatform/tips.

B Additional Checks

Saiz and Simonsohn (2013) propose a number of data checks to confirm that the GPR index is a useful proxy for the phenomenon we want to measure, geopolitical risk. We describe how we perform this data check below.

1. We verify that our keywords are more likely to be used when geopolitical risk is high than when it is low (Data check 1: Do the different queries maintain the phenomenon and keyword constant?, and Data check 3: Is the keyword employed predominately to discuss the occurrence rather than non-occurrence of phenomenon?). Across all the documents in our human audit, we found that 86 percent of articles measure high geopolitical risk, whereas only 4.3 percent of these articles measure declining tensions. We therefore conclude that increases in GPR are far more likely to lead to the use of the keywords that we search for.

2. The GPR index is a frequency, thus satisfying data check 2 (Data check 2. Is the variable being proxied a frequency?).

3. We verify that the average number of documents found is large enough for variation to be driven by factors other than sampling error (Data check 4: Is the average number of documents found large
enough [...]?). In particular, we verify that spikes in GPR are easily attributable to well-defined historical events not only at monthly, but also at daily frequency. For instance, the monthly data show that our index spikes in April 1986, mostly following the events that culminated with U.S. air strikes against Libya on April 15. However, the index also spikes, within the month, on April 8, when the U.S. accused Muammar el-Qaddafi of sponsoring terrorist acts aimed at Americans (such as the Berlin discotheque bombing which occurred on April 5). It also spikes on April 18, when British police found a bomb in a bag that was taken onto an El Al aircraft.

4. We verify that measurement error is low enough (*Data check 3*, and *Data check 5: Is the expected variance in the occurrence-frequency of interest high enough to overcome the noise associated with document-frequency proxying*?), by choosing combinations of keywords that – unlike with a single keyword or a bigram – are unlikely to be used outside of the realm of rising geopolitical risk. For instance, a naive geopolitical risk index is nearly as high in March 1991 as in January 1991, whereas the benchmark GPR index is four times as low. This occurs because the naive index fails to account for the fact that many articles comment the aftermath of the Gulf war, but do not explicitly mention threats or risks, something that our index takes into account.

5. We construct and examine narrow and broad indexes around the benchmark index, thus satisfying data check number 5.

6. Because our interest as economists is to look at the economic effects of higher geopolitical risk, we need to guard against the possibility that words related to geopolitical tensions are more likely to be mechanically used during, say, recessions, even if recessions are caused by geopolitical tensions. To address this concern, we construct a version of the GPR index that excludes the keywords “economy” OR “stock market*” OR “financial market*” OR “stock price*”. Although 19 percent of articles in GPR are filtered out once this criterion is included, the resulting index (GPRNOECON) is virtually indistinguishable from the benchmark index (their correlation is 0.989). Additionally, the share of articles in the GPR index mentioning economic words is uncorrelated with real outcomes (the correlation with the change in log industrial production is 0.03), thus allaying concerns that an omitted variable biases the results both “geopolitical risk” and economic outcomes (*Data check 6: [...] Does the chosen keyword have as its primary or only meaning the occurrence of the phenomenon of interest?*, and *Data check 7: [...] Does the chosen keyword also result in documents related to the covariates of the occurrence of interest?*).
7. We use the naive index as a placebo document-frequency variable in our VAR analysis. In particular, there is the possibility that it is not geopolitical risks per se that are bad, but the overall tendency to discuss geopolitical events during recessions. We show that adding GPRE to the VAR does not change the predictive power of GPR in explaining GDP drops. (Data check 8: Are there plausible omitted variables that may be correlated both with the document-frequency and its covariates?)
Table 1: Search Categories for the benchmark GPR index

<table>
<thead>
<tr>
<th>Search Category</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Geopolitical Threats</td>
<td>Geopolitical AND (risk* OR concern* OR tension* OR uncertaint*)
“United States” AND tensions AND (military OR war OR geopolitical OR coup OR guerrilla OR warfare) AND (“Latin America” OR “Central America” OR “South America” OR Europe OR Africa OR “Middle East” OR “Far East” OR Asia)</td>
</tr>
<tr>
<td>2. Nuclear Threats</td>
<td>(“nuclear war” OR “atomic war” OR “nuclear conflict” OR “atomic conflict” OR “nuclear missile*”) AND (fear* OR threat* OR risk* OR peril* OR menace*)</td>
</tr>
<tr>
<td>3. War Threats</td>
<td>“war risk*” OR “risk* of war” OR “fear of war” OR “war fear*” OR “military threat*” OR “war threat*” OR “threat of war”
 (“military action” OR “military operation” OR “military force”) AND (risk* OR threat*)</td>
</tr>
<tr>
<td>4. Terrorist Threats</td>
<td>“terrorist threat” OR “terrorist threats” OR “menace of terrorism” OR “terrorism menace” OR “threat of terrorism” OR “terrorist risk” OR “terror risk” OR “risk of terrorism” OR “terror threat” OR “terror threats”</td>
</tr>
<tr>
<td>5. War Acts</td>
<td>“beginning of the war” OR “outbreak of the war” OR “onset of the war” OR “escalation of the war” OR “start of the war”
 (war OR military) AND “air strike”
 (war OR battle) AND “heavy casualties”</td>
</tr>
<tr>
<td>6. Terrorist Acts</td>
<td>“terrorist act” OR “terrorist acts”</td>
</tr>
</tbody>
</table>

Note: This table lists the combination words searched in the construction of the GPR index. The exact search query, inclusive of words that are excluded from the search, is in the Appendix.
Table 2: GPR and Capital Flows

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Inflows/GDP Emerging Economies</th>
<th>(2) Inflows/GDP Advanced Economies</th>
<th>(3) Inflows/GDP United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagged Inflows</td>
<td>0.290 (0.0597)</td>
<td>0.141 (0.0530)</td>
<td>0.497 (0.0866)</td>
</tr>
<tr>
<td>GPR Index, standardized</td>
<td>-0.339 (0.146)</td>
<td>0.901 (0.323)</td>
<td>0.407 (0.382)</td>
</tr>
<tr>
<td>VIX, standardized</td>
<td>-1.116 (0.207)</td>
<td>-1.387 (0.666)</td>
<td>-0.995 (0.441)</td>
</tr>
<tr>
<td>Lagged GDP Growth</td>
<td>0.260 (0.0956)</td>
<td>1.975 (0.475)</td>
<td>-0.209 (0.726)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.280 (0.836)</td>
<td>10.96 (1.551)</td>
<td>5.449 (1.808)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,796</td>
<td>2,065</td>
<td>103</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.157</td>
<td>0.047</td>
<td>0.332</td>
</tr>
<tr>
<td>Number of country</td>
<td>23</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>Country FE</td>
<td>YES</td>
<td>YES</td>
<td>—</td>
</tr>
<tr>
<td>Clustered SEs</td>
<td>YES</td>
<td>YES</td>
<td>—</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses

Note: Source: Balance of payments (BOP) data collected from national sources. Gross inflows are BOP liabilities, and consist of the nonresidents purchases of domestic assets net of sales. The sample of advanced economies includes Japan, Germany, France, UK, Italy, Canada, Spain, Australia, Netherlands, Switzerland, Sweden, Belgium, Norway, Austria, Denmark, Greece, Finland, Portugal, New Zealand, Slovakia, Slovenia, Estonia. The sample of emerging economies includes China, Brazil, India, Korea, Mexico, Indonesia, Turkey, Argentina, Venezuela, South Africa, Thailand, Colombia, Malaysia, Israel, Chile, Philippines, Peru, Ecuador, Jordan, El Salvador, Russia, Saudi Arabia, and Latvia. We drop from the sample countries with a standard deviation of inflows to GDP larger than 50 percent (Hong Kong, Ireland, Singapore, Luxembourg and Iceland). GDP growth is quarter-on-quarter GDP growth, expressed in percentage terms.
Table 3: GPR and Stock Market Returns

<table>
<thead>
<tr>
<th>Country</th>
<th>GPR Benchmark</th>
<th>GPR Historical</th>
<th>GPR Historical, Post-1950</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>Std. Errors</td>
<td>Sample</td>
</tr>
<tr>
<td>Australia</td>
<td>-.45</td>
<td>.51</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Austria</td>
<td>-.87</td>
<td>.81</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Belgium</td>
<td>-2.29</td>
<td>.72</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Canada</td>
<td>-1.06</td>
<td>.43</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Denmark</td>
<td>-.92</td>
<td>.69</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Finland</td>
<td>-.03</td>
<td>1.17</td>
<td>1985-2017</td>
</tr>
<tr>
<td>France</td>
<td>-2.05</td>
<td>.9</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Greece</td>
<td>-4.57</td>
<td>1.36</td>
<td>1988-2017</td>
</tr>
<tr>
<td>Ireland</td>
<td>-1.82</td>
<td>.93</td>
<td>1988-2017</td>
</tr>
<tr>
<td>Italy</td>
<td>-2.54</td>
<td>.94</td>
<td>1985-2017</td>
</tr>
<tr>
<td>New Zealand</td>
<td>.22</td>
<td>1.13</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Norway</td>
<td>-2.29</td>
<td>.82</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Portugal</td>
<td>-1.05</td>
<td>.94</td>
<td>1985-2017</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-.86</td>
<td>.67</td>
<td>1985-2017</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-1.67</td>
<td>.63</td>
<td>1985-2017</td>
</tr>
</tbody>
</table>

Note: Estimation of individual country effects of geopolitical risk on stock market returns. The table reports the estimated α’s for the following model: \(r_{i,t} = \mu_i + \alpha_i GPRSHOCK_t + \varepsilon_{i,t} \), where \(r_{i,t} \) is stock market return in country \(i \) in month \(t \), and \(GPRSHOCK_t \) is the residual of an AR(1) process estimated for \(GPR \) divided by 100, so that the coefficient measures the percentage impact on stock returns from an innovation in GPR of 100 units. Standard errors are corrected for autocorrelation using the Newey-West method. Source: Morgan Stanley Capital International (MSCI) without dividends. Prior to 1970, world returns are calculated using the weighted average of country-specific returns. We use the same weights as Berkman, Jacobsen, and Lee (2011) which are as follow: United States 41%, United Kingdom 12%, Germany 8%, France 8%, Japan 6%, Italy 4%, Canada 3%, Switzerland 2.5%, The Netherlands 2.5%, Belgium 2%, Spain 2%, India 2%, Australia 2%, South Africa 2%, Denmark 1%, Norway 1%, and Sweden 1%.
Figure 1: The Geopolitical Risk Index

GPR Benchmark Index (GPR)

Index (2000-2009 = 100)

0 100 200 300 400 500 600

Note: The line plots the benchmark GPR index.
Figure 2: The Geopolitical Risk Index: Contribution of Various Words

Note: The chart plots the cumulative contribution of the various phrases that enter the GPR index (top panel), and of some other phrases that do not enter the index (bottom panel). Higher geopolitical risk since the 2000s reflects increased mentions of both terrorist acts and terrorist threats, as well as an increased use of terms directly mentioning geopolitical uncertainties.
Figure 3: The Geopolitical Risk Index: The Two Sub-Indexes

GPR THREATS AND ACTS

Index (2000-2009 = 100)

NOTE: This figure decomposes the benchmark index into two subcomponents. The GPR RISKS component measures only the risk aspect of geopolitical tensions, as measured by search terms 1, 2, 3, 4 and 5 in Table 1. The GPR ACTS component measures the actual occurrence of events, as measured by search terms 6, 7 and 8 in Table 1.
Figure 4: The Historical Geopolitical Risk Index

Note: The line plots the monthly GPR index since 1900.
Figure 5: The Historical Geopolitical Risk Index: Contribution of Various Words to the Index

NOTE: The line plots the GPR index since 1899, broken down by its keywords.
Figure 6: The GPR Index and three Alternatives

Broad GPR

Narrow GPR

Simple GPR

Note: See text
Figure 7: The Geopolitical Risk Index and Other Proxies for Geopolitical Risk

Note: See text. In the top panel, shaded areas represent the two World Wars.
Figure 8: The Geopolitical Risk Index and other Measures of Risk

Note: This figure compares the GPR index with VIX, the EPU Index, and with the price of Gold.
Figure 9: The Impact of Increased Geopolitical Risk

Note: The black solid line in each panel depicts the median impulse response of the specified variable to a rise of 120 points in the GPR index, while the shaded bands represent the 68 percent pointwise credible set. GPR index and the VIX are in levels, the corporate spread in basis points. All responses are measured in percent. The horizontal axis measures months since the shock.
Figure 10: The Impact of Increased Geopolitical Risk: Acts vs Threats

Note: VIX included in the VAR but not shown. GPR indexes in levels, corporate spread in basis points. All responses are measured in percent. The horizontal axis measures months since the shock.
Figure 11: The Impact of Increased Geopolitical Risk: 9/11 and a Censored Version

Note: The black solid line in each panel depicts the median impulse response of the specified variable to a rise of 120 points in the GPR index, while the shaded bands represent the 68 percent pointwise credible set. The horizontal axis measures months since the shock.
Figure 12: The Impact of Increased Geopolitical Risk: Alternative Ordering

Note: The black solid line in each panel depicts the median impulse response of the specified variable to a rise of 120 points in the GPR index, while the shaded bands represent the 68 percent pointwise credible set. The horizontal axis measures months since the shock.
A Additional Figures
Figure A.1: Search Query for the Benchmark GPR Index

pub.Exact("Boston Globe" OR "Chicago Tribune" OR "The Daily Telegraph" OR "Financial Times" OR "The Globe and Mail" OR "The Guardian" OR "Los Angeles Times" OR "New York Times" OR "The Times" OR "Wall Street Journal" OR "The Washington Post") AND DTYPE(article OR commentary OR editorial OR feature OR front page article OR front page/cover story OR news OR report OR review) AND ("United States" AND tensions AND (military OR war OR geopolitical OR coup OR guerrilla OR warfare) AND ("Latin America" OR "Central America" OR "South America" OR Europe OR (Africa NOT "South Africa") OR "Middle East" OR "Far East" OR Asia)) OR (geopolitical AND (risk* OR concern* OR tension* OR uncertain*)) OR ("nuclear war" OR "atomic war" OR "nuclear conflict" OR "atomic conflict" OR "nuclear missile") AND (fear* OR threat* OR risk* OR peril* OR menace*) OR ("war risk*" OR "risk* of war" OR "fear of war" OR "war fear*" OR "military threat*" OR "war threat*" OR "threat of war" OR ("military action" OR "military operation" OR "military force") AND (risk* OR threat*)) OR ("terrorist threat" OR "terrorist threats" OR "menace of terrorism" OR "terrorism menace" OR "threat of terrorism" OR "terrorist risk" OR "terror risk" OR "risk of terrorism" OR "terror threat" OR "terror threats") OR ("beginning of the war" OR "outbreak of the war" OR "onset of the war" OR "escalation of the war" OR "start of the war" OR ((war OR military) AND "air strike") OR (war AND "heavy casualties") OR (battle AND "heavy casualties")) OR ("terrorist act" OR "terrorist acts") NOT (civil war OR "human rights" OR (end N/2 war) OR "air force" OR movie OR film OR museum OR anniversary OR memorial OR art)

NOTE: The index is the share of number of articles returned by the search above, divided by the total number of articles, indexed to 100 in the 2000–2009 decade.
Figure A.2: GPR, GPR Peace and GPR Naive

Note: This figure compares the benchmark index with the naive index constructed counting the relative frequency of all articles mentioning any of the four keywords that enter the set \mathcal{E}, as well as with a naive index subtracting the word peace from the occurrence of the words war and terrorism. Note that the indexes are expressed as a share of the total number of articles.
Figure A.3: The Impact of Increased Geopolitical Risk: Adding EPU to the Baseline VAR

Note: The black solid line in each panel depicts the median impulse response of the specified variable to a rise of 150 points in the GPR index, while the shaded bands represent the 68 percent pointwise credible set. The horizontal axis measures months since the shock.