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Abstract

This paper studies the entry-exit dynamics of an experience good industry. Con-
sumers observe noisy signals of past firm behavior and hold common beliefs regarding
their types, or reputations. There is a small chance that firms may independently
and unobservably be exogenously replaced. The market is perfectly competitive:
entry is free, and all participants are price-takers. Entrants have an endogenous
reputation Pg . In the steady-state equilibrium, pg is the lowest reputation among
active firms: firms that have done poorly leave the market, and some re-enter under
a new name. This endogenous replacement of names drives the industry dynamics.
In particular, exit probabilities are higher for younger firms, for inept firms, and for
firms with worse reputations. Competent firms have stochastically larger reputa-
tions than inept firms both in the population as a whole and within each cohort,
and thus are able to live longer and charge higher prices.

JEL Classibcation : C7, D8, L1

Keywords : reputation, industry dynamics, free entry, exit and entry rates

1 Introduction

By now there is a large empirical literature that studies the dynamics of brms within an
industry. Among the most salient patterns that have consistently been found aré: (1)
The presence of sizeable entry and exit rates even in industries that are scarcely growing,
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1The empirical literature has also given a great deal of attention to Prm growth and brm size. We
will abstract from this issue by assuming that all Pms have a capacity constraint of une unit.



with large heterogeneity across industries (Dunne et al., 1988); (2) younger brms are B
ceteris paribusb more likely to exit and also (3) more likely to charge lower prices (Foster
et al., 2008).

A recent strand of the literature adds a number of regularities related to PrmsO reputations.
McDevitt (2011) focuses on an industry where brms with widely di erent track records
compete with each other, and where exit, entry, and name changes occur frequently.
Similarly, Cabral and Hortacsu (2010) study the reputational mechanism of eBay, an
online auctioneer. These studies conbrm previous Pndings, and add that: (4) the brms
that are more likely to change names or exit are those with worse or shorter track records
(McDevitt, 2011); and (5) the probability that a given seller will exit the market increases
as its reputation worsens (Cabral and Hortacsu, 2010).

This paper presents a model of an industry in which the dynamics are driven entirely by
reputation. The model is fully consistent with the bve patterns above, and yields novel
theoretical predictions as well. As in those industries analyzed by the recent empirical
literature, in our model the active brms are not only heterogeneous in age (as debned by
the number of periods that have elapsed since the brm began operating under its current
name), but also within any age cohort they are heterogeneous in both records (histories)
and prices.

Ours is an adverse selection model with imperfect public monitoring. Reputations are
the common belief regarding a brmOs type. There is perfect competition in the sense of
Gretsky et al. (1999): brms are price-takers, and there is free entry. The incumbentsO
reputation is the Bayesian update of a common prior given an observed history of (imper-
fect, public) signals; the entrantsO reputation is also a consistent belief. Incumbents have
the option to re-enter the market under a new name. In the non-revealing, pure strategy
equilibrium that is our focus, they choose to exercise this option whenever their reputa-
tion falls below a threshold, so that (5) holds. This threshold coincides with the entrantsO
reputation. In the steady state, there are exit and entry Bows while the industry as a
whole is stagnant, as in (1). Competent brmsO reputation stochastically dominates that
of inept brms; still, full separation is never achieved. Thus, the option to change names
is used more intensively among the inept, so that (4) holds. As a consequence, each time
the option is exercised the reputation distribution of any given cohort shifts to the right,
and thus older cohorts have stochastically better reputations. In turn, this also implies
that the probability of exiting the market is decreasing in age, as in (2). Moreover, since
prices are increasing in reputation, (3) holds. Even though the reputation of older brms
prst-order stochastically dominates that of younger ones, there is always heterogeneity
both within and between cohorts; in fact, the reputation distributions for all cohorts have
full support.

The theoretical literature has investigated a number of possible explanations for the bve
patterns above. One strand asks whether such dynamics can be the result of individual
productivity shocks in a perfectly competitive market for a homogeneous good (the semi-
nal paper of Hopenhayn, 1992, stands out). A related strand looks at the combination of
productivity shocks and Pnancial frictions (Cooley and Quadrini, 2001, Albuquerque and
Hopenhayn, 2004, Clementi and Hopenhayn, 2006) or labor market frictions (Hopenhayn
and Rogerson, 1993). While (1) and (2) are consistent with this view, the law of one
price is at odds with (3). Also, the empirical concepts of reputation and track records do
not have a theoretical counterpart in this setting. The same is true in Fishman and Rob
(2003), a paper in which the dynamics of the industry are driven by consumer inertia in
a context of search costs and older brms sell more because they have a larger customer
base.



On the other hand, there is a large body of theoretical literature that looks at the creation
and maintenance of PrmsO reputations in markets for experience goods (e.g., Klein and
Le" er, 1981, Fudenberg and Levine, 1989, and Mailath and Samuelson, 2001, to name
just a few; Mailath and Samuelson, 2006, and Bar-lsaac and Tadelis, 2008, present com-
prehensive expositions of the literature.) This literature discusses primarily the monopoly
case. In spite of this, some papers still manage to look at entry and exit decisions. For
instance, Bar-Isaac (2003) assumes that the brm has the option to leave the market.
When the bPrm knows its own type, in equilibrium the high-quality brm never leaves,
while the low-quality Prm plays a strictly mixed strategy at low levels of reputationbi.e.,
below some threshold. The mixed strategy is such that the post-exit reputation of any
brm that has crossed the threshold becomes the threshold. Having a strictly positive
probability of exiting, the low-quality type eventually leaves; this implies that there is
complete separation in the long run. Board and Meyer-ter Vehn (2010) extend this anal-
ysis by incorporating moral hazard and the possibility of entry, and focus their analysis
on the investment and exit decisions over the life cycle of the brm. In this equilibrium,
the entry-level reputation coincides with the threshold as well.

Within the strand of the literature that looks at reputation dynamics in competitive mar-
kets, some papers focus on markets in which the information Row to potential customers is
quite limited, and fundamentally di! erent from that to customersbnamely, private mon-
itoring; H3rner (2002) and Fishman and Rob (2005) stand out. Instead, we want to
examine markets where informationbalbeit imperfectb3ows constantly to potential cus-
tomers as well; for instance, the eBay feedback system (Cabral and Hortacsu, 2010), or
the complaint record of plumbing Prms (McDevitt, 2011). Indeed, the internet-related
technological progress turns an increasing number of markets fall into this category by
providing means of communication among customers; think for instance of the travel
industry with TripAdvisor, Expedia, etc.

Tadelis (1999) is one of the brst papers to formally analyze competition under imperfect
public monitoring. It presents an adverse-selection model with a continuum of brms.
However, the author focuses on an equilibrium where bPrms leave the market after one
bad outcome; this means that active brms either donOt have any history (they are new), or
they must have impeccable records. Tadelis (2002) develops a similar model, under moral
hazard. While this kind of model can explain certain stylized facts of industry dynamics,
like the di! erences in pricing and probability of exit between cohorts, it cannot explain
the observed heterogeneity in these variables after controlling by age: all brms of the
same age must have the same records and reputation. In particular, it cannot account
for observations (4) and (5) beyond age.

Our model recasts Mailath and Samuelson (2001)Os in a Walrasian environment, obtaining
heterogeneous reputations even in the steady state (as in Vial, 2010, but considering
entry). In our model, the entry-level reputation and the reputation distributions are
endogenous. These variables turn out to be important determinants of the industry
dynamics, as the rate of endogenous exit (hence the exit-entry Bow) is tied to them.
Hence, our paper complements recent literature on reputation under competition that
features heterogeneous reputations, where some papers assume the entry-level reputation
to be exogenous (e.g., Ordonez, forthcoming) while others obtain it independently from
the reputation distributions because of their focus on mixed strategies (e.g., Atkeson
et al., 2012). When analyzing industry dynamics, the dl erence between mixed and pure
strategy equilibria becomes important: in the former case, there are incumbents among
those with the entrantsO reputation while in the latter only entrants carry the entry-level
reputation. In each case the resulting age distributions of bPrms are therefore Herent.



The entrantsO reputationpe is a consistent consumer belief. This consistency condition
ties together consumersO belief updating, the reputation distributionge and the PrmsO
strategies in a non-trivial fashion. The reputation of entering Prms must coincide with
the fraction of competent brms among them. However, the mass of competent brms that
choose to change their names and re-enter the market depends precisely on the level of
reputation with which they would re-enterband so does the reputation distribution. We
prove that such a consistent entry-level reputation exists, and moreover, that it is unique
(Theorem 1). Within this equilibrium, the determinants of the entry-level reputation

Ug are purely informational.> We bnd that the entry-level reputation is increasing in
the exogenous replacement rate (Theorem 3): industries in which competence is more
transient (for instance, because of a high rate of technological development), the entry-
level reputation will be more demanding.

We also Pnd that highly reputable Prms are less likely to cross th@g barrier during any
given time interval (Theorem 4), so that ObetterO names last longer, in a stochastic sense;
the same is true of competent brms, both in the population as a whole (Theorem 2) and
within each cohort (Theorem 5). As a consequence, as time goes by each generation or
cohort of bPrms improves its reputation (Theorem 6).

The rest of the paper is organized as follows: Section 2 presents the model. Section 3
introduces the equilibrium concept. Section 4 discusses existence and uniqueness issues;
it is technical and can be skipped without loss of continuity. Section 5 examines the
relationship between the replacement rate and the turnover ratio. Section 6, the core of
the paper, analyzes the dynamics of the industry in the steady state.

2 The model

2.1 Preliminaries

We consider an inbnitely repeated game in which, at every daté = 0,1, 2,..., a market
for a given service opens. Firms are long-run players, while consumers are not. Instead,
at every stage there is a di erent generation of short-lived consumers.

The service is an experience good as per Nelson (1970): its quality is ex ante unobservable
to buyers. We assume that there is no communication among consumers. Since consumers
only live for one period, the information each one obtains as a result of consuming the
service is not transferred to the next generation, but lost altogether. Hence, quality is also
unobservable ex post. Nevertheless, after consumption takes place, an imperfect signal
of the quality each active bPrm provided is publicly observed.

Each generation of consumers is of mass 1. In contrast, there is an unlimited supply of
potential brms. Each individual may consume or produce at most one unit per period.
Hence, while all consumers may purchase, not all Prms will be able to sell. We call Oactive
at tO a brm that produces at timet, and OinactiveO a brm that does not. We will assume
that consumers are homogeneous, and that their willingness to pay is high enough so that
they all buy; as a consequence, the mass of active brms willDin equilibriumbbe 1.

2In contrast to Bar-Isaac (2003), Board and Meyer-ter Vehn (2010) and Atkeson et al. (2012), in our
model the determination of pg is independent from the zero-probt condition.



There are two types of brm: competent(C) and inept (1). Competent brms are those
that can only produce a high-quality variety of the service, while inept Prms can only
produce a low-quality one. The total mass of competent Prms is denoted by, constant
over time and less than 1.

Each active bPrm is subject to the possibility of dying. A dead brm is replaced immediately
by a newly born brm. While consumers are aware of this replacement process, they do
not observe it. The process is assumed to be i.i.d. across time and bPrm$.denotes the
probability of dying, and # the probability that a dead brm is replaced by a competent
one. This replacement process ensures that throughout any history there is never almost
certainty about any PrmOs type. In kect, Cripps et al. (2004) shows that the adverse
selection model with imperfect monitoring needs a mechanism for replenishing uncertainty
about types in order for doubts about playersO types to persist in the long run. Dierent
mechanisms have been studied. One of them is given by information frictions, such as
limited memory (Liu and Skrzypacz, 2009), coarse observability (e.g., in Ekmekci, 2011, in
which consumers observe discrete ratings rather than full histories), or costly observation
of records (Liu, 2011). A second, related approach is that of Tadelis (1999) and Tadelis
(2002), where consumers forget certain aspects of a history (what he calls Oreputation
reductionO), with the same kect. Another mechanism is provided by OtremblesO, as in
Levine and Martinelli (1998). The approach we follow is the one advanced in Mailath
and Samuelson (2001). By adding an unobservable replacement process, consumers are
never certain of who they are dealing with. The replacement of exiting Prms may be
plainly exogenous (our choice) or endogenous as it is in the literature that studies the
possibility of trading names2 If instead of a replacement process we had chosen a process
of unobservable type changes, the dynamics of the industrybwhich is the focus of our
paperbwould be exactly the same.

On the other hand, a mass$ " 1 of competent brms is also born each period among
inactive brms. Note that for the total mass of competent brms to be constant over time,

it is necessary that# = “-*.

Types are privately observed. Thus, this is a pure adverse selection model. Hence, from
the consumersO perspective, the probability of receiving a high-quality service is the same
as the probability of facing a competent brm.

Firm names play a key role in our model. Consumers only observe each brmsO name and
the history of public signals since the last spell of uninterrupted use of that name. They
don®t know if that name has always belonged to that brm, or if it was brst used by some
of its predecessors. In that sense, a brmOs reputation is really the reputation of the name
they are currently using.

When a name is not used in one period, it is forgotten by consumersbtogether with its
associated signal history. Then, should a brm become inactive for one period or longer,
consumers will forget its history. The next time the brm becomes active, it will have to
do so under a new name. Hence, maintaining a name requires remaining active without
interruption. In addition, the Prm may also choose to change its name at the beginning of
each stage; we assume that this is done by exiting the market and reentering immediately.

Thus, a brm may have dl erent names at dl erent times according to the (endogenous)
name-changing process. Moreover, the same name may pass from one brm to another

3See, for example, Tadelis (1999) and Mailath and Samuelson (2001). A di ! erent strand of this
literature looks at the case in which trading names is observable, as in Wang (2011) and Hakenes and
Peitz (2007).



under the (exogenous) replacement (or birth-death) process, in which the latter inherits
the formerOs history.

We assume consumers have common priors. The timeline for the stage game is shown in
Figure (1).

Staget begins Trade Replacement
¥ ¥ ¥ ¥ ¥ ¥
Exit/entry Signal ry Staget ends
[prior ;]  [interim py] [posterior [; 44 ]

Figure 1: Time line for the date-t stage game

ConsumersO beliefs refer to the probability that a given name belongs to a competent
bPrm, conditional on all available information. We refer to this consumer belief as the
nameQOs reputation. At the beginning of each stage, each incumbent is endowed with a
prior reputation [;. Then, should the incumbent decide to produce (be active) att, it
must choose whether to change its name to a new onebwhich will carry the reputation
associated with a name with no history ue Bor keep its old name and prior reputation
M. We will refer to this as the brmOsnterim  reputation, and denote it by ;. This is
the reputation the brm will have when the market opens. After trading, the signal ry
will be publicly observed, and the replacement process takes placebyet it is unobserved
by consumers; the Bayesian update of the interim reputation givenr;, which takes into
account the possibility of having being replaced, will be the brmQsosterior reputation.
This posterior will be the next periodOs prior, and so it will be denoted by, .

2.2 Signals

The signal r refers to any piece of information that is publicly available to consumers.

For instance, if the brms were schoolst could be the score percentile on a standardized
test; if the bPrms were academic journalsy could be their impact factor; if the brms were

health care providers,r could be their medical malpractice track records; if the brms were
car makers,r could be the consumer reports, and so on.

The signal lies in the open unit interval: r # (0,1). When a brm provides high quality,
its signal is distributed according to the c.d.f. Fy; when it provides low quality, it is
distributed according to the c.d.f. F_. The p.d.f.Os are denoted b andf_, respectively.
We assume that a higher signal makes it more likely that a brm provided high quality:

Assumption 1  (Monotone likelihood ratio). The likelihood ratio R(r) $ fff((rr)) is a
monotonically increasing bijection from (0, 1) to (0, %).

This assumption implies that Fy (r) & F_ (r) for all r, this is to say, the signal conditional
on H brst-order stochastically dominates the signal conditional onL.



2.3 Firms

At every staget, each bPrm chooses whether to produce or not (i.e., remain active in the
case of active brms, or enter in the case of inactive brms). We denote ly # {0, 1}
the production level. In addition, those active brms that choose to produce must decide
whether to keep their previous name or change it (by exiting and reentering immediately
at no cost). We denote byn; = 1 the decision to keep the name, and byn; = 0 the
decision to change it. Those brms that were inactive do not have this choice.

The date-t probts % are given by:
! :
0 _ pm)' c ifg=1
k) 0 otherwise 1
wherec is the production cost, andp () the competitive price for a service that is of high
quality with probability p. p reRects consumersO beliefs, and is endogenously determined

in equilibrium, taking into consideration the equilibrium naming and production policies.

The production and naming decisions jointly maximize the expected, discounted probts:

18 @ ") &E™], )
t=0

where &# (0, 1) is a discount factor. The expectation depends on the brmOs type, as this
al ects the signal distribution.

Firms have heterogeneous and ever-changing reputations. L&s; denote the cdf of prior
reputations at the beginning of staget of those brms that were active att' 1. Staget
begins with PrmsO exit and entry decisionG; denotes the cdf of interim reputations of
those brms that chose to be active at. Thus, G; and G; di! er because some active Prms
chose to exit, some to re-enter, and some inactive brms decided to enter (the last two
with a reputation pg).

The superscripts C and | denote the corresponding subpopulations of competent and
inept brms. Lemma (3) below proves that there is a unique steady-state pair of reputation

distributions G- and G .

2.4 Consumers

Consumers are homogeneous. Their willingness to pay for a high-quality unit of the
service is' (with ' > 0), while for a low-quality one it is normalized to zero. Hence,
when facing a reputation{i brm, the expected utility of buying is:

Eul=w " p ®)

Consumers are indi erent between two brms with reputationsp and p#if p(u)' p(p) =

(Y}



2.5 Equilibrium: dePnition

By equilibrium we mean stationary Markov perfect equilibrium. Each brmOs state variable
is the (commonly known) prior reputation [, and its (privately known) type ( # {C,1}.
Recall that if a brm does change its name, its previous history becomes unobservable to
consumers; as a consequence, its reputation is nfif. Rather, consumers do not distiguish
among entering brms, regardless of whether they were active or not in the previous period.
Thus, all entrants will have the same reputation level, denoted bype . Hence, the brmOs
reputation is given by:

He = nef + (1" ne) Pe

Debnition 1. An equilibrium is;

¥ A naming policy function n ([, ();
¥ A production policy function q(f, ();
¥ A price function p(W);

¥ A belief system, namely:

b A probability that a brm is competent

B =) (M 1, T 1), the Bayesian update of the priorpy 1 given the signal
ru 1, for brms that were active in the previous period and kept their names
An entry-level reputation pg, for brms that enter under a new name, and

b A pair of steady-state, population-wide reputation distributions GC,GI for

active brms

such that:

El. Beliefs are consistent,

E2. n and g maximize (2),

E3. ConsumersO choices maximize (3), and
E4. The market clears.

As is common in this kind of model, many equilibria are supported by dl erent o! -
equilibrium-path beliefs. For instance, there is a trivial equilibrium with no reputation-
building: All consumers believe only inept brms are active at all times, so that every active
Prm has a null reputation and is indi! erent as to whether to produce or not. Instead,
we look at a reputational equilibriumban equilbrium where the reputation of each brm
is al ected by its signals. Specibcally, we are assuming that signals and only signals
al ect the reputation of brms that remain active; in particular, the naming decision is
uninformative. As competent and inept bPrms with reputations higher than pg will keep
their name (see Section 3 below), the event that a Prm keeps its name in the equilibrium
path is indeed uninformativebthere is no assumption so far. Firms with priors belowig
will change their names. Should one such brmbcontrary to the equilibrium strategybkeep
its name, we assume that consumers wonOt change their prior. For instance, they interpret
this deviation as an uninformative Otremble®.

4A few remarks are in order. First, any out-of-equilibrium belief that assigns a deviator a reputation



3 Reputational equilibrium

Price function. Consumers must be indi erent among providers. Thus, E3, together
with the assumption that consumers are homogeneous, implies that the price as a function
of U is given by:

p()="*+"u 4
where* & 0 for consumers to buy. More reputable brms are paid higher prices.

Remark 1. With heterogeneous consumers, none of the main results would change. For
instance, if consumers varied in their willingness to pay, the equilibrium assignment would
be positively assortative, as in Vial (2010), and the price functionOs slope would depend
also on the supply side, namely, the population-wide reputation distribution.

Naming policy. Writing the brmsO optimization problem (2) for a type ( Prm in re-
cursive form, we get:

v(iL()=(@2" &mn%x{q(n(p(ﬁ)' A+ " n)(p(He)' o)+
6, %

&L ") (@ (W@ mpe N+ Pue.()dFs ®)

Notice that if the brm chooses not to produce at a given date, the state in the following
period would be (Lg, () should the Prm continue to exist.

Lemma 1 (naming policy). The optimal naming policy is to choose the highest between
[ and pe: !
- 1 ifE( ue
$ -
| 0= 0 otherwise

Proof. Since the price is increasing in reputation, so is the Bow utility. On the other hand,
the law of motion ) is also increasing in this argument since it is the Bayesian update of
the a priori 1. Then, a brm that wants to produce prefers to do so at the highest available
reputation. O

Observe that both types bnd it optimal to act in the same way. Then, bPrms choose to
change their name as soon as their reputation falls below the thresholgiz . The value
function becomes:

v ()=(@1" &mgx{q(p(u)‘ 0+
0, %
&1 ") . v(g (Lr)+@ " Pue,()dFs  (6)

where
1 =max {I, ue } @)

strictly smaller than pg also supports these equilibrium strategies. This is so because any such belief
makes it optimal for low-reputation brms to change their names. Second, there is no equilibrium in which
low-reputation brms that keep their names get a reputation higher than Ue . If they did, then the inept
bPrms would also want to keep their namesband at these reputation levels the fraction of competents is
smaller than pg . Third, a mixed-strategy equilibrium in which some brms with a prior reputation below

Ue keep their names and get a reputation equal to pg is conceivable. This is the sort of equilibrium
analyzed in Bar-Isaac (2003). This equilibrium is not essentially di ! erent from the one we focus on, since
it is still the case that the interim reputation is the maximum between the prior and the entry-level
reputation.




Production policy. Since there is an unlimited number of potential entrants, compe-
tition will drive prices down so that a positive mass of brms choose to stay out.

Lemma 2 (production policy). The optimal production policy is:

®@mC)=1 ).
&
1 |fH>“E

o1 =
¢ @) Oorl if f& Mg

This is to say, all competent brms will always be active, and so will inept brms with a
reputation above the entry-level. The other inept brms will be indierent as to whether
to produce or not.

Proof. The value function (6) is increasing inu for both types. On the other hand,

V(L C) >v (K1)

because the signals for a competent brm are stochastically larger than those of an inept
one. It follows that the free-entry condition applies only to inept Prms:

V(He,1)=0
O]

It follows that market clearing is obtained when a mass(1' !) of inept brms are active.
The equilibrium price function (i.e., *) is pinned down by the no-entry condition for inept
Prms:
! 0, %
V(pe, 1) =1 " & (*+'ue’ )+ &1" ") v() (He.r),l)dF. =0
0

Beliefs. Each brmOs reputation is formed as the Bayesian update of a common prior
upon observation of the public history. As usual, we require beliefs to be consistent with
the equilibrium strategies.

At the begining of the game ¢ = 0), the mass of competent brms id. From then on,
a brm with a given name dies with probability " and passes its hame to a newly born
brm, which is competent with probability #. This process is hidden to consumers. Hence,
from the consumersO viewpoint, names are associated with underlying brm types that
may change according to the transition matrix in Table (1). This process, though, is
taken into consideration in the Bayesian update of the nameQOs priqr given the signalr
as follows:

fu(r)p
fu(p+fo (@ p
In e! ect, the probability that the Prm under that name is competentat t (Pr((1 = C | Mt 1,11 1)$
) (Mt 1, 1)) is made up of the probability that there was a previous brm that died and
was replaced by a newly born competent brm("# ), and the probability that the brm
survived (1' ") times the conditional posterior probability of it being competent at t
after a signalry; 1.

) (wr)="#+(1" ") )

10



Type at t ((1)

| C |

Typeatt+1 C|1° "+ '# &
((t+1) L "@ # 1'%

Table 1: Transition matrix for types under bxed names

We now turn to the consistent entry-level reputation pg. It must coincide with the
fraction of competent Prms among the group of entrants:

_ Competent entrants
B Entrants

9)

HE

Before the exit-entry process, the mass of competent Prms is' $,° the sum of:

¥ active competents that survived: ! (1' ")
¥ newly born competents that replace active competents that died:!"#

¥ newly born competents that replace active inepts that died: (1" !)"#

According to the optimal production and naming policies, the competent entrants are

then the sum of all competents whose reputation fell belowsg, (! ' $) G° (Me), because
they change their names, and all newly born competent among inactive brms§.

The inept brms whose reputation fell belowug either change their names (i.e., exit and

re-enter), or simply exit to be replaced by other, previously inactive, brms. Regardless,
since market clearing (E4) requires the mass of active brms to be 1 at all times, then
the mass of entrants must equal the mass of exiting brms. Thus, the mass of entrants is

G (pe).

The righ-hand side of Equation (9) can be written as:

\ e =C
(" G (ke)+ $
G (He)

Then, a consistent entry-level reputation pig is a bxed point of+. Theorem 1 shows that

there is only one suchug . Figure 2 depicts a numerical example of steady-state reputation
distributions, and the corresponding + function; the uniqueness ofjg is apparent.

+(He) $

(10)

SRecall that | = "1 !/,

11
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Figure 2: Reputation distributions and consistent entry-level reputation

Notes: r|, ! Be(r[3,2) and r| ! Be(r|2,3). The parameters are ! =
0.1, " =0.5 and # = 0.025. The resulting pe is 0.26.

In equilibrium, the net inBows of Prms must be zero. If there is entry, there must be
exiting. When competent brms are born among inactive brms (i.e.$ > 0), the entry-level

reputation pg must be strictly larger than "#, so that a positive mass of low-reputation
bPrms chooses to leave the market and stay out. The newly born competents will enter.

On the other hand, when no competent brms are born among inactive brms (i.e§ = 0),
the only brms that would enter are those that exited because of having a reputation
lower than the entry level threshold. Each individual PrmOs reputation would change by
erasing its history, but the mean reputation of the group cannot change, as consumers are
aware of the fact that the entrants are the same ones that just exited. Then, this adverse
selection argument shows that the entry-level reputationplg cannot be larger than"#: A
consistent entry level reputation is one so low that nobody wants to change their name.

4 Existence and uniqueness

Section 3, assuming the existence of a non-revealing reputational equilibrium, character-
ized the equilibrium strategies. This section shows that there is a unique pair of steady-
state reputation distributions and a unique entry-level reputation which are consistent
with those equilibrium strategies.

We proceed in two steps. First, the entry-level reputation is assumed to be an exogenous
parameter y # (0,1). Under this assumption, we explain how BayesO law debnes the
stochastic change over time of individual reputations, as signals accumulate. We also
establish the dil erence-equation system that debnes the dynamic process of population

12



distributions, for a bxed, arbitrary, entry-level reputation y. Lemma 3 shows that there is
a unique steady-state distribution pair for competent and inept brms. This existence and
uniqueness result is important because we want to focus on steady-state equilibria. The
analysis also allows us to characterize those distributions: They are comparable under
brst-order stochastic dominance, are continuous and have full support.

Second, the entry-level reputationy is endogenized by requiring it to be consistentyy =
Me . Indeed, consistency implies that the fraction of competent Prms among those active
Prms whose histories grant them a given reputationu is precisely i, and similarly, that
the fraction of competent brms among entrants is preciselyle. These two properties
turn out to be closely related. In the steady state new brms will enter (and some old ones
will exit) if and only if new competent bPrms are born among inactive brms.

This section is technical, and can be skipped without loss of continuity.

4.1 Fixed, exogenous Yy

Rewriting Equation (8) in the likelihood ratio form we have:

) wn= e ) s 1)

Debne the functionsk(x, 1) and g (x,r) from x = ) (i r) as®
Fo= F(GH)*F x=HAAL ") R(:({X("L()’;'::l)f, n (12)
b= R x= (L ) o ROREGD) (19

R pxr)+1" gxr)

The Prst function, =(x, ), says what the signal value should be for a Prm of current
reputation p to have a reputation x the next period. The second function, g(x,r),
indicates what the reputation was in the previous period of a brm with a signalr that
currently enjoys a reputation x. Similarly, ) (i, r) is the reputation in the next period of
a brm that started o! with a reputation p and whose signal was.

Appendix A shows that the end-of-period reputation cdf for each type of brm is thus
given by:

( I "L+ 19%) (1! ")1% ¢

s «
Gt () 7 e 0 GE (1 (x, 1)) dFy
"L % @ "a! %)

=l @, (14)
G (X) S T+ & oF(X'y) G} (gt (x,r)) dFL

The exit-entry process changes these distributions in two ways. First, brms whose rep-
utation fell below the threshold y replace their reputation with y, so that the evolution
of Y¢ is actually debned by, = max {) (M 1, 1),Y} . All competent bPrms remain
active, since competent brms with a low reputation clean up their names and re-enter
immediately. Second, there is a mas$ of newly born competent brms.

6 Assumption (1) ensures that $ is strictly increasing in r, so that higher signal values always improve a
prmOs reputation. Moreover, the image of $ is (%!,%! +1 ! % because the likelihood ratio is surjective:
$ (%!, 1! %+ %!)" (0,1)=( %! %! +1! 9% . On the other hand, it is readily seen that $ is strictly
increasing in U, and continuous. Hence, being onto, it is a bijection, and these implicit functions are
well-debned.

13



These cdfOs are transformed by the entry-exit process as follows:

&
0 if x<
C - # $ y
Cia = s (1 980, (0 iTx(y
&
0 if x<y
clibo= 4 * ’ (15)

B S 1 9)Gy (0 ifx(y

Note that when $ = 0, G, and G},; are simply the truncated versions oféﬁr1 and

@1,,1 , respectively, because the only change is the replacement of the lowest reputations
by y.” On the other hand, when$ > 0, the mass of newly born competent Prms enters
to replace an equal mass of currently inept Prm$.

Replacing in (15) and rearranging, we get:

l R ( ' ' " n ( *
Gt (%) = W$ . ) Fu (£(x,Y))
G () ahg 11!!,,!3@% N A%
Vg 19% (1! "+ #) “e(xy) =C ,..
+ (iL(l! %)::'! j)) .I f (Qﬁ(xy)cil (Fl (er)) dFH (16)
e (0 #) o Gy ((xr))dFL

Debne the right-hand side of Equation (16) as the operatofT in B [0,1] + B [0, 1]Pthe
product space of continuous bounded functions. The steady-state reputation distributions

G" and G' are a bxed point ofT. SinceT depends parametrically ony, so doG® and G'.

Lemma 3. T has a unique bxed point for any givery # ['#,1' " + "#]. Moreover:

1. G* and G are absolutely continuous with suppor{"#,1' " + "#]

2. G¢ and G' have the common supporfmax{y,"#},1' " + "#]
Proof. In Appendix B. O

The steady-state distributions are continuous in the parametery, as they are the bxed
points of a contraction.®

In equilibrium, then, there will be a unique pair of steady-state reputation distributions.
Their absolute continuity follows from the absolute continuity of the signal distributions.
The corresponding densities will be denoted byg® and @', respectively.

"The reader may wonder about the consistency of the supporting beliefs in this case. It is odd that
consumers assign a reputation y to brms that in equilibrium achieved a lower reputation in the previous
round. After all, the entry-level reputation should be the mean reputation for entrants. Indeed, Lemma 4
below shows that any consistent entry-level reputation is such that no bPrm ever wants to exit the market,
namely, ug # %"

80bserve that when &> 0, it is necessary that the mass of exiting inept brms be su " ciently large so
that they make enough room for the entrants, in order for G{ﬂ to be nonnegative. This is a condition
over ug . Consistency will require this to be the case in equilibrium. However, this restriction has no
bearing on the convergence result we are about to describe.

9 See De la Fuente, 2000, Chapter 2, Theorem 7.18.
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4.2 Consistent y

When useful, we will stress the fact that G$ depends parametrically ony by writing
G (x,y); this is the fraction of type' ( brms with reputation no greater than x when the

distributions G~ and G' have been generated under the cuto valuey. We write + (X,y)
accordingly as:

(1" 9T (y)+$
G(x,y)

This function is well debPned forx > "#. Consistency requires thatpug be a bxed point
of + in both arguments, i.e., lg = + (Mg, Hg).

+(xy)$

: (17)

Observe that consistency also requires that the expected probability of being competent
in any information set be equal to the fraction of competent brms within that set. In
particular, the probability of being competent conditional on the PrmOs reputation being
x should be exactly x:
o (9T (xpe)
9(X, HE)

When new competent brms are born among inactive brms3(> 0), the entry-level reputa-
tion must be high enough so that old Prms wish to exit and make room for the newcomers.
Then, any consistent entry-level reputation must be larger than"# . This can be appre-
ciated in Figure 2. Theorem 1 below asserts that there is actually a unique suche .

(18)

Theorem 1. If $> 0, there is a unique consistent entry-level reputationug . Moreover,
e # ("#,!1).

Proof. In Appendix C. O

Thus, when there is type change among inactive brms there is a continuous process
of endogenous name renovation. The next theorem establishes that the reputation of

competent brms is stochastically larger than that of inept brms, and hence this name

renovation is biased towards inept brms.

Theorem 2. Both before and after the exit-entry process takes place the reputation of
competent Prms Prst-order stochastically dominates the reputation of inept brms. That

is, for all x # ("#,1' "+ "#), G_ (X, Le) & G (X, He) and GC (x, k) & G' (X, K ).
Proof. In Appendix D. O

Using Equation (18), we obtain:

(1" $)C° (e, pe)

EM|u<pe]l= —= (19)
G (He, He)
Thus, the consistency conditionpg = + (Mg, Mg ) can be written as:
$
He = E[M|p<pelt =——. (20)
G (Me, Me)
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That is, the entrantsO reputation is the mean reputation that the brms that have just left
the market would have had if they didnOt exit, increased by the fact that a mas$ of
inept brms that exit are replaced by the newly created competent brms that enter.

From Equation (20) it is clear that in the case of $ = 0, where no new competent Prms
are born among inactive brms,pyg cannot be larger than"! . Indeed, Equation (20)
becomesyg = E[u|u<pe]. However,E[p|p<pe] <pe forall pg > "' ; this is to
say, unless the eventu < p g is null, Equation (20) is inconsistent. It follows that the
consistent entry-level reputation pg satisbesyg & "! . Without loss of generality, we
assume thatpye = "!'. When $ = 0, then, there is no actual exiting or entry; as the
entrantOs reputation would be worse than any active brmOs reputation, no matter how
bad the track records may be, no brm would ever want to change its name. This proves
that:

Lemma 4. If $=0, the entry-level reputation pug is no greater than"! in equilibrium,
and there is no actual entry.

0.9
0.8
0.7

0.6

0.4r
0.3f
0.2f U (H, HEe )

0.1p

Figure 3: Consistent entry-level reputation when$ = 0

Notes: r|, ! Be(r[3,2) and r| ! Be(r|2,3). The parameters are ! =
0.1, " =0.5 and # = 0. The resulting pe is 0.05.

Summing up, this section proved that there is a unique steady-state reputation distribu-
tion for each type of PrmG® and G', and a unique consistent entry-level reputationpg .
When no competent Prms are born among inactive brms¥ = 0), this pg is the lowest
possible, and as a consequence all brms want to keep their names at all times and there
are no exit-entry Rows. Any reputation is better than pg. Nevertheless, the threat of
entry is not without consequences; rather, it serves the purpose of keeping prices down.
On the other hand, when new competent brms are born among inactive brms$¢ 0), Ug

is such that there are exit-entry Bows, and at all times a positive mass of brms chooses
to change their names.
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5 Exogenous and endogenous replacement rates

The empirical literature on industry dynamics bnds that there is considerable heterogene-
ity among industries in terms of entry and exit rates. On the other hand, these rates are
sizeable even in industries that are neither growing nor shrinking. Typically, within an
industry the gross entry and exit rates are similar to each other, but at the same time
they are orders of magnitude larger than the net rates (Dunne et al., 1988). Our focus
is on a steady state, where the net exit rate is zero. Still, there is a constant renewal
(exit and entry), given by G (ug )Dthe fraction of incumbents that leave the market, or
turnover ratio.

In our model there are two replacement processes: that of brms, and that of names. The
brst one, although empirically unobservable, adects the latter. Theorem 3 discusses how
the replacement rate" a! ects the entry-level reputation g :

Theorem 3 (entry-level reputation and replacement). The entry-level reputation g is
increasing in ", the exogenous replacement probability.

Proof. See Appendix E. O

A higher level of " implies a decreased informativeness of histories, as the past becomes less
useful in predicting a brmOs current type. As a consequence, the reputation distributions
of competent and inept Prms move closer to each other. By this mechanism, the fraction
of competent brms among those below the thresholg@g increases, so thafug increases.
This is depicted in Figure 4.

j

(a) G° (n) and G (p) for di! erent values of % (b) #(p) for di! erent values of %

Figure 4: Distributions and consistent entry-level reputation for di! erent values of

Notes: r|, ! Be(r[3,2)and r| ! Be(r |2, 3). The parameters are” = 0.5
and # = 0.025
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As for the turnover ratio, it not only depends on g but also on the population-wide
reputation distributionBwhich shifts when " increases. Figure 5 shows that in our exam-
ple, when the replacement rate is small it has a largeleect on pg but a negligible € ect

on the turnover ratio G (pe ), and that the opposite occurs when the replacement rate is
large. Notice that a larger yg means that less information transpires to consumers, as a
higher fraction of histories are erased by the name-changing process. Hence, the exoge-
neous decrease in the informativeness of histories given by the highérhas the @ ect of

a further endogenous decrease through this channel.

0.6
0.6

051
0.5-

0.4r 04k

HE G(He)
e 1 03l

02p 1 02f

01 f 01}

0 L L L L L L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 D0 0.1 0.2 03 0.4 05 0.6 0.7 0.8

] 1

(&) pg for di! erent values of % (b) G(ug) for di! erent values of %

Figure 5: Entry-level reputation and turnover for di ! erent values of"

Notes: r|, ! Be(r[3,2)and r| ! Be(r |2, 3). The parameters are” = 0.5
and # = 0.025.

6 Industry dynamics

Our model has a number of predictions, some of which have been investigated empirically.
Cabral and Hortacsu (2010), in a study of eBay auctions, bnd that the probability that a
Prm exits the market increases as its reputation declines (as debned by eBayOs reputation
mechanism.) In turn, McDevitt (2011) studies the plumbing services market in lIllinois
and bnds that, all else being equal, the brms that are more likely to change names or exit
are those with worse track recordsba variable that resembles the history of public signals
in our model. Theorem 4 establishes that this is exactly what we should expect.

Regarding the cross section, the literature bnds that younger Prms are more likely to exit,
and charge lower prices, than older brms (Foster et al., 2008). In the same vein, McDevitt
(2011) bnds that the exit probability is monotonically decreasing with age. Theorem 6
asserts that these bndings are consistent with our model. It should be noted, though, that
in our model we track the age of names, not of brms. This is so because consumers do
not observe the birth-death process, and so they donOt distinguish among those brms that
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have acted under the same name. Hence, brms are the appropriate empirical counterparts
of names in our model.

We start by looking at the cross-sectional variation in exit rates:

Theorem 4 (Name dynamics). For any active brm, the probability of exiting the market
in the next period is:

1. Higher for inept Prms than for competent bPrms;

2. decreasing in the PrmOs reputation (both conditional and unconditional on type);
and also

3. decreasing in the current signal (both conditional and unconditional on type).

Proof. In Appendix F. O

The exit probability is the probability that the reputation falls below the threshold pe.
Part (1) of the theorem follows from the fact that competent PrmsO signals are stochasti-
cally larger than inept PrmsO; part (2) of the theorem follows from the fact that according
to BayesO rule, the posterior probability of an event is increasing in the prior; and b-
nally, part (3) of the theorem follows from the monotone likelihood assumption. These
results are consistent with the empirical bPndings reported in Cabral and Hortacsu (2010)
and McDevitt (2011), that relate exit probabilities with reputation and track records,
respectively.

We now turn to the cross-sectional dl erences in reputation distributions of names of
di! erent age in the steady state. This is to say, we compare across cohorts. Notice that
in the steady state, the group of agea looks exactly the same as the group of age O ia
periods in the future. In this sense, studying the cross-sectional variation (across cohorts)
is equivalent to studying the evolution over time of a given cohort.

Per Lemma 4, if no new competents were born among inactive prmss(= 0), then there
would be no entry nor exiting, this is to say, no dynamics. In this case, it is not possible
to distinguish among cohorts, as all nhames are introduced at the same time. Age is
irrelevant, as it is completely detached from reputation. This contrasts with H3rnerOs
model (HSrner, 2002), where age and reputation are biunivocally related, as only Prms
with perfect records survive.

On the other hand, as soon as there is a positive mass of competents born outside the
market ($ > 0), a RBow of entry/exit emerges.

Let a denote the age of a name that was introducecdh periods ago in the market and
has been kept throughout (this, regardless of whether the Prm that carries it has died
and been replaced in that lapsus or not). All such names conform the cohord. Let G,
denote the prior reputation distribution of the set of brms of cohort a and type (, and m
its mass; similarly, G and m$ denote the interim reputation distributions and its mass
after exit.

At any date, a new cohort of massG (U ) enters. Out of them, a fraction pg , is competent:
m§ = pe G (Ue). As all new names carry the same reputationyg , we have:
&

0 ifx<pe

GF00= Choo= | e
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As time goes by, at each period two changes occur: (i) The birth-death process shifts the

masses of competent and inept Prms within the cohort according to the transition matrix
1: * * *
) m$, ) 1" "+ "# # ) m$ 21)

m,, o @ # 1 my,

and (i) The mass of surviving names in each subpopulation( shrinks by a factor of

1 ézﬂ (Me) , as those brms that exit are not replaced by other brms from the same
cohort. Hence: # e $
m§+1 = mﬁﬂ 1 Ga+1 (UE) (22)

In turn, the evolution of the prior reputation distributions in a given cohort at di ! erent
ages is given by:

' ( + 11 +19 c 19 | !
—C (A1 +1%)my 1% m, K
Gon (0 o omn, U omn (@F‘(X'“E))Gf; CICIDL ST
= 1 (1! 9 1 105 (X, .
Gas1 (X) e o " Gh(r(x.r)) dFy
The distributions of interim reputations relate to the priorsO as follows:
& "
if X<pg
G$ X = =1 =! 24
a (x) GLO0 BLe) ity (e (24)

11 G, (ue)

Equation 23 is analogous to Equation 14. The only dierence is in the weights. In the
population of active brms as a whole the total mass and the ratio of competent to inept
are constant over time. In contrast, not only each cohort is losing mass over time, but
also each type does so at dierent rates. Similarly, Equation 24 resembles Equation 15;
they di! er in that within each cohort there is only exiting and no entrance.

Theorem 5 (Reputation across types by cohort) Within each cohort, the (prior, in-
terim) reputation of competent brms Pbrst-order stochastically dominates the (prior, in-
terim) reputation of inept brms:

Oa#N)(Ox#['#,1' "+"#]), Gs (x)& G, (x) and GS (x) & G\ (x)
Proof. See Appendix G O

Theorem 5 implies that conditional on age, inept brms are more likely to exit the mar-
ket than competent brms. As a consequence, the rate at wich the mass of competents

decreases is smaller than that of the inepts in Equation (22), a§§+l (Mg) < GLH (He).
In turn, this implies that the reputation distribution for each cohort as a whole improves
over time as each cohort ages:

Theorem 6 (Reputation across cohorts) The (prior, interim) reputation of age- a+ 1
brms brst-order stochastically dominates the (prior, interim) reputation of agea brms
both, conditional and unconditional on types:

OQa#t N)Ox#['#,1" "+ "#]), Gﬁﬂ (x) & éﬁ (x) and Gas1 (X) & Ga (X)
G (X) & G} (x) and Gau (X) & Ga ()

Proof. See Appendix H. O
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This Ocleansing®! ect is an imperfect, stochastic version of what happens in H3rner
(2002). Figure 6 illustrates this in our example: older brms (i.e., names) have stochas-
tically better reputations than younger ones, and yet not even the limit distributions
are degenerate. This result is consistent with the empirical Pndings in McDevitt (2011)
and Foster et al. (2008), where the exit probability is monotonically decreasing in age.
Moreover, since better-reputation brms charge higher prices, this result is also consistent
with the Pnding that older Prms charge higher prices.

Figure 6: Reputation distributions for di! erent ages,G, (x)

Notes: r|, ! Be(r|3,2) and r| ! Be(r|2,3). The parameters are ! =
0.1," =0.5 and #=0.025. pe is 0.26.

Remark 2. Theorem 6 implies that the mean reputation is monotonically increasing in
age. The variance, however, is not. Figure 7 illustrates this in our example. As all
age-0 brms (i.e., entrants) have the same reputationig, the variance starts at 0. As
time goes by and each brm gets a Herent realization of the signal process, variance
increases. The cleansing!esct that excludes from each cohort a disproportionate fraction
of inept brms, however, brings the reputation of the surviving Prms closer together.
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Figure 7: Mean and variance of reputations by age

Notes: r|, ! Be(r|3,2) and r| ! Be(r|2,3). The parameters are ! =
0.1," =0.5 and #=0.025. pe is 0.26.
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Appendices

A Computation of the reputation distributions

This sectipn derives Equatlon (1@ which gives the distributions of reputation for competent and inept
types, Pr Mg # X |'ts1 = Gyipt (X).

Stage t¥begins v Marke;cl opens v Birth édeath

Exit /Tentry - Sign:il re - Stage? ends
Individual reputation: H; (prior) Mt (interim)
Reputation distribution: G Gt

Figure 8: Time line for the date-t stage game

| "
Let Hir, oy e #a #r; denote the joint cdf of the random variables  Ty.q , Ht,rt,'t, t+1  after the time- t
exit-entry _process and before the time- t + 1 exit-entry process. At the beginning of this time interval,

the prmsO types are't and their reputation levels are |i; after ry is observed and the birth-death process
occurs, brmsO types are';+1 and consumersO beliefs are updated tof;,; . H is a mixed distribution:
while pt, B4+ and r¢ are continuous random variables, 'y and 't+1 are discrete. Moreover, p; has a
point mass at y. The marginal cdf of H over pt is denoted by Gt (ut); notice that it is discontinuous at
y. The marginal cdf of H over ry conditional on ' is denoted by F# , and assumed to have a density.
Note that the distribution of r{ only depends on the type 't. Hence, the distributions of reputations and
signals relate to H as follows:

Groy (08 Hir o s (X17) Grar (08 Hr,, (X)
GE(X)$ Hyus (X11) Gt (x) $ Hy, (X)
Fa(r)$ Hew (r |)

On the other hand, the exogenous birth-death process among active Prms at t is independent of any other
variable, and is fully described by the joint distribution in Table (2):

Before ('t)
C | Marginal
After C "1 %+ %) % @r") " &
("t+1) | %"l ) @arwhH@at! ") | 1t "+ &
Marginal " i

Table 2: Joint distribution of types among active brms at t
Note: Recall that %("! !)= &

The marginal distribution over [, (before time t+ 1 exit-entry process), conditional on 't+1 ="', is
the expectation of Hyr, . juiro.# #.,, OVEr He,rt, and 'y

=t - . :
Graa (X)=Pr Mg # X | "ty =
= Hpy #y X|
M | g # 4 ! 598

= Buitan Erosomn Eudrosomn HF1+1|M,F1,#1,#‘+1 xwr ',
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Notice that there is a functional relation between T,,; and (U, rt), as established by Equation (11):

Hier = $ (He,re)

This implies that [;,; and ("t,'¢+1 ) are conditionally independent given  (pt,rt). Hence, Hyr ot (X [wr ') =
Hig e (X | i, r). Moreover, given (pt,rt), ;41 becomes determinate, so that:

Hirr e XTI = Lisqur y#x)

Thus, we can write:
# # %

! ! e3$
Gior () = Emmn Erimotn Ewirosomn Lswroex XRG,

There are di! erent ways in which we can compute this expectation, depending on the order of integration
we choose. If we start with the expectation over the current type, we get:
4 ‘ ! # % ! &3
Gur )= Prtf'vet =" Ermisa Eudrosten Hsmrwxy XTRWGT
#

Recall from Equations (13) and (12) that we write:
L=H(xr) andr =+ (x, )

for the implicit functions for p and r from x = $ (y,r). Hence:
% ! " % ! &

Enclredeton Hsmoexy X TWE = Epgrososn Luepoary XIRE = GE(R(XT)
so that we get:
— ! W # c "
Giaa (X) = Pr 't=Cl'ts1 ="' Ergm.s. Cr (BR(Xr)) [rC"
! # "
+Prote= 0 tter = Ergmome, Ot (BROGT) NI
On the other hand, the expectation E, 4 #,, [Gf (#(x,r)) [r,"," "] must be computed bearing in mind

that r induces a discontinuous distribution over G? (gt (X,rt)), with point mass at y. Thus, we split it
into the two events separated by the point of discontinuity:

# $ ] # $

Er#oty O (BOGT)) [LC" " =Pr ri> B(XY) [nC " Ermo#. OF (B(T1) |re> F(xy),C" '
# $

! W .
+Prore# B(Y) LG Ersos,, GF (B(XT) [ # F(Xy),C.'
% . &
where E; 14 #.,, Gt (BR(Xrt)) [re > F(x,y),C, =0, so that:

# e $ 0 rixy)
Erijm,#a Gt (#(x,rt)) | re,C,"

GE (f(x,r1)) dFy

Similarly,

# \ $ 6 F(Xy )
Ery# s Gt (BOGT) [re, !

Gt (#(x,r1)) dF

Plugging into the equation for 6&1 (x), we get:

%"(1! 1) O r(xy)
" &

"1 %+ %!) O r(xy)

—=C
Giy (X) = T &

GE (#(x,r1)) dFy + Gl (r(x,rt)) dFL  (25)

An analogous equation is obtained for Gl,; (x):

5

— %L1 1) T FOw) o

Gior ()= Gy (r(x,r¢)) dFy +
t+1 11 + & o t

@armHat % O rxy)

) Gy (r(xru)dFL (26)

B Proof of Lemma 3

To lighten notation we supress the reference to y as an argument of T and the distributions.
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We start by establishing that the operator

T debned by Equation ( ??) is a contraction mapping in the

set of pairs of continuous, normalized 1° functions (G-, G') endowed with the following metric:

wh

for

(« ) (e ) (e ) (_,
(66 ,G6°G6' = max (s 6,6 .(s G.G
ere: (_y ) - VR
(G, = sup G ()G (x)
X%["% ,1& " + "%]
% {C,1 }. The supremum is taken over x % [%!,1! %+ %!] since the supports of G and G are

always contained in this interval.

Recall that the operator

T transforms the pair G ,G; into a pair Gy ,Gray  according to:

1
T ¢ : 11 %+ %l 4
Gra () Lot 1 e Fr (F(x,Y))
Grex (%) Leng ) &g T Fy(F(xY))
) %L&E&H!) T« —c .
g Gl ) Tar o g By (R dFy o
e S CR L)) FOO G (g (x, 1) dF

and where y %[0, 1] is treated as a constant.

First notice that there are no brms with
decisions are made; therefore, we have:

reputation either below

y or above 1! %+ %! after entry-exit

for any distribution of reputations. Moreover, the dePnitions of

6;#(p):0 if u<y and
Gl (=1 ifp> 11 %+ %

Gl (W)
Gy (W)

F(x,1) and g (x,r) imply that:

1. g(x,(x,y)) = y. This is to say, the previous reputation of a brm who obtained a signal  r(x,y)

that changed its reputation from y to x wasy;

g(x,r)<y & r> r(x¥y): Those brms who have a reputation x today and had a reputation lower

than y the previous period are those who obtained signals of at least k(x,y); and

CpOGr) > 1D %+ %! & r< (X 1! %+ %!) : Those brms who had a higher reputation than
1! %+ %! the previous period and have a reputation x today are those whose signals were lower
than E(x, 1! %+ %!).

2.

Hence,

Therefore, the distance between 6&1

G (r(xr)=0 ifr> e(xy) and
Gl (rxr)=1 ifr< B(x 1! %+ %!).

Gy (r(xr10))
Gy (1(xr1)

and G5y
)

—C ='C —C —'C ,
(s Gii1.Gin = SLiP G (X)) Giyp (%),

can be rewritten as:

Using the properties of the sup and

, 6

e ) , F(xy )
(s Gtu G =sup (1! %+ %!)
X

( . )
G (O r)) ! G (R (xr1) dFy
F(X, 1&" +"%)

" 0 rx, ( . ) X
CIRLURN Gl r)! G ((xry) dFl.

" &

+ %!
(X, 1&" +"%)

|| operators, we obtain:
10 k(xy )

(¢ )
(s GG # (1! %+ %!)sup;
X o0 (X 1&" +"%)

( . )
Gy (r(xr)) ! G (r(xr1) dFy

10 rxy) (_, . )
sup, Ge (r(xre) ! Gy (gr(xre)) dF;
X R(x, 18" + %) '

| ow
" &

10The function G is normalized if G' (%!)=0 and G" (1! %+ %!)=1.
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Moving the absolute value inside the integrals:
(e ) O rixy) e e :
(s Grir,Gra # (1! %+ %!)sup Gy (B(re)) ! Gy (r(x 1)), dFy
LR L&+ %)
11 "+ & 0 F(Xy ) " o ’
+ %! ————sup G (rGr)) ! Gy (r(xr)); dF
V& X k(x 187+ %)

By the dePnition of (s (G¥,H), we also know that:
( ) O rixy) (

)

(s G Gua # (L1 %+ %!)sup (s G, .G dFy
X E(X 1&" +"%)
(o]
11 "+ & F(xy ) (., )
+ %l = —sup (s G;,G, dF.

X E(x, 18"+ "%)
Taking the distances outside the integrals, we get:

(¢ o) Oroy)
=(1! %+ %) (s GC,G, sup dFy
X" F(X, 1&" +"%)
11 "+ & (7| 7,.|) O rxy)
+ %' ——(s Gy,G; sup dF_
& X R(x 1&" +"%)
«
But ,;(Xx'{g{,.+..%)dF = F(e(xy) ! F(#(x 1! %+ %) < 1forall x %[%!, 1! %+ %!]. Let us dePne
) as follows:
5
) =max sup (Fu (PO y) ! Fr (F(x, 11 %+ %1)) ,

X%["% ,1& " + "% ]
6

sup (FL (PG YD) ! FL(B(X, 11 %+ %L1)))
X%["% ,1&" + "%]

Observe that ) %(0,1). Then:
—c ) (¢ _
(s Gy Gy #) Q! %+ %) (s G G
[ (_, )
+)%!71'"|+& L, Gy
- ) (e )
=C =l ='Cc ="
#)( G .G, GGy
This is so because the sum of the coe" cients is smaller than 1. Following a similar procedure, it can be
shown that the distance between Gy, and Gy, satisbes:

L ) e )
(5 Gu1.Graa #)( G .G , GC.G

We thus conclude that:
T o o) ) e ) e )
( Ghu.Ga . GG #) GG, GG

i.e., T is a contraction mapping.

On the other hand, the set of continuous, bounded real functions endowed with the sup norm is comglete.
Moreover, the subset of normalized functions is closed, 11 thereby complete. Hence, by BanachOs Fixed
Point Theorem T has a unique bxed point, which is a pair of continuous and normalized functions. !

Remark 3. If we had used %! instead of y as the lower bound of reputations in the proof, we would have
obtained a higher modulus ) Bbut we would still be able to prove that T is a contraction mappingb.

Remark 4. y not only a! ects the modulus of the contraction, but also the limiting distribution.

Remark 5. If y is consistent, G° (x) and G (x) are increasing functions because G€ (x) and G' (x)

are non-negative in the whole domain, while F(x,y) is increasing in x. Thus, G® and G' are not only
normalized and continuous, but also increasingbi.e., distribution functions.

Thus, the proof of the existence of a steady-state distribution of reputations is not a ! ected by the
endogenous entry-exit process as long as y is bxed, but the shape of the steady-state distribution is.

The absolute continuity of Fy an F implies that G® and G' are absolutely continuous, with common

support [%!,1! %+ %!].

11See Lemma 1 in Vial, 2010 for a proof.
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C Proof of Proposition 1

Debne the function * (n) $ # (K, K1), with p> %!, as:
("1 &G (x,y)+ &
("1 &G (xy)+@L ! "+ &G (xy)

with x = y = y, i.e., Equation (17) evaluated at the diagonal. We need to prove that * (n) has a unique
bxed point. We begin by observing that:

#(xy)=

Lemma 5. * has at least one bxed point.

Proof. The function f (x) $ G (x,x) is continuous, with f (%!) =0 and f (1! %+ %!) = 1. Hence,
by the intermediate value theorem there is at least one + % (%!,1! %+ %!) such that f (+) = M!T'
and so * (+) = 1. We also know that * is continuous in its domain, and that * (+)! +=11! +> 0 and
*(A! %+ %! (1! %+ %)= "1 (1! %+ %!) < O (this follows from the assumption that %< 1! ").
By the intermediate value theorem, then, there is at least one  p % (+ 1! %+ %!) such that * (n)! u=0.
Hence, there is at least one pg %(%!,1! %+ %!) such that # (Ug,UE) = HE.

The next step is to establish uniqueness.

Lemma 6. *"(ug)=0 if ug is a bxed point. Hence, the bxed point is unique.

Proof. Indeed,
" JH s

* (M) dpe = dx + —dy

X y

evaluated at x = y = pg and dx = dy = dug.

The brst term corresponds to:

-3 4
Foyye CLOE YA+ &Y (xy) (! & (xy) | ¥ o)
. X ("1 &G (xy)+@ ! "+ &G (xy) ("!'&ITMHY)+A! "+&7T (xy)
However, consitency requires that ag® (xy) = X, namely, the fraction of competent among

ag® (xy )+ &a)g (xy) )
those bPrms with reputation x is exactly x. Moreover, at a bxed point # (x,y) = x. Hence, (7 =0 at
X = y = He. Inwords, the entrantsO reputation # (x,y) increases when the exit reputation level increases
if and only if the brms that leave and reenter after this change have a higher reputation than those that
are already replacing their names. At the bxed point, however, those Prms have exactly the same mean
reputation, so moving the cutu ! point will have no e ! ect on the entrantsO reputation.

In turn, the second term corresponds to

# # (xy), G # (xy),G
7(%)’): ?- y (x,y)+ TT(X,Y),
1 ,G° .G '
= Sy a(l! #(xy)) 5 (xy)t 1! a)#(xy) g (x.y) (28)

and # (x,y) = x if x = y = pg is a bxed point.

After a change of variables, the operator T in Equation 16 can be rewritten as:

R / 1
=C (1! %+ %!) L% 3 4
T % y)=e0 - gl lmeo2 Fu(F0Y)
G aew | a&"%) FL (£ (X Y))
1& &+! 1& &+ !
(1 %+ o) ERED T RO GE (uy)fy (e (xn) o
L wy FOOGE (y) fL (# (xp) ) dy
TS (xy)
Yoy (@9)

29



—=C
For a given y, the (unique pair of) steady-state distriutions G° and G' satisfy %, x,y) =
- c
T . (X,¥). In particular, let us consider as the initial steady-state distributions those obtained

G
for y = pe (i.e., for a consistent entry-level reputation). Changing vy a! ect G® and G' in two ways: (i)
asy al ects the operator itself, it also a ! ects its Pxed point (direct e ! ect); and (ii) as the distributions
also al ect the operator, they also a ! ect its bxed point (indirect e ! ect):

It |
0 2 2(xy)=0 .2C 2(xy)
"y Y 's

1
e , .

. ;“”’ B (y) fu (R o) R CFO SEL iy f (e (k) S dn
, =C . .

SO L8 (y) fu (F(x, 1) F‘*“’dw px0 15 ) fu o) F(X”)du

(30)

The direct e ! ect is obtained from direct computation of the derivatives on Equation 29 (when evaluated
at the steady-state distributions obtained for y = pg):
/ 1

TC ; Togl&" +"%) "% (1 & &) -3 4
0 2% 2(xy)= T0y) & (1% ae" 55&)(1&&) G? (. y) I (O Y)) (31)
%:5 Y s . G' (y,y) fL (¢ (x,y)

. =C , =C . X
Equation 30 debnes an integral equations system for G—y and G—y However, instead or looking for

a solution of this integral equations system, we can iterate the operator T to show that 28 equals zero
when evaluated at a bxed point: since the steady-state distributions are the bPxed point of a contraction
mapping in a complete metric space, they can be obtained as the limit of the sequence debned by

repeatedly iterating T starting from any feasible pair 68 and 6:).

Let denote the t-th iteration of T as Gtc and 6{ , and debne #¢ (x,y) as &G(iiy) If we start iterating
T from the initial steady-state distributions (obtained with y = Hg), then y = #o(y,y) = &Gﬁg(im.

Notice that iterating T with the same y gives a constant sequence, :sint:e@oC and Gy are > already Pxed
points of T for y = pg . But after iterating T with a di ! erent level of y we obtain Gl = Gg; moreover,

for an |nl:>n|te5|mally small change in vy, the di! erence between them is exactly —dy Hence, we can
debne G1 as:
! W —# T#,
G1 xy =Gp(xy)+ ' (xy)dy
y Go

&G§ (vy)

, we obtain:
Golyy)

When evaluating Equation 31 in GOC y G'O, and taking into account that y =

/ , 1
TC,
8 T;"3(><y)—<30(yy)

Y 'Go

7 (X, Y) gar (L1 %+ %) yfy (F(xy)+ % (L y)fL (F(XY))
Y e (AL D) yfu (EOGY))+ (L %) y)fL (E(xY))

(32

Moreover, from Equations 8 and 12we obtain:
(11 %+ %) yfy (F(y)+( %) AL Y)fL (FXY)= x(Yfn YD+ T YL (F(xy))  (33)
Hence, the direct e! ect can be rewritten as:

I, 1
B 005 8 y)= Gotyn) LYy ey +@ 1 L ey B
—— ) 18 &+ !
y Go
e )
and the pair Gf,G'l can be debned as:
IO R -+ _ R h
21wy = 20 (xy)* Go(v,Y)-o Xy 1 x (34)
Gl GO 1& &+ !
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't

with -0 (x,y") $ .(Xy'y) (Vfn (ECGY)+@ ! y)fL (B(xy)) dy, while #1 can be obtained as:

b1y = (L 8CE Y)* XColyy) oY)+ &
Go(%y)+ Go(¥,¥)-o(x,y)
After evaluating at x = y and rearranging, we obtain:

#1!y,y"" - o (y,y) @+ -o0(xy)dy) = #o(y,y)

1+-0(xy)dy

Repeatedly iterating the operator T we obtain a sequence of distributions debned as:

) ¢ i cC . " I X

b Lot b ;
20 oxy = 2L Xy + Go(y,y) el XY A (35)

Gt Gta1 T8 &+ 1
where - (y") $ 1 FO g (y) (ufw (G + (@1 W T (F () S dy for all t > 0.
Hence, we conclude that #; (y,y") = #o (y,y) for all t> 0, and hence (T (y,y)=0 wheny = pg. O

Finally, we conclude that pg <"

Lemma 7. The consistent entry-level reputation is lower than the fraction of competents among active
brms after the exit-entry process takes place: pg < "

Proof. Notice that # (Ug,Heg)= Mg and # (1! %+ %!, pug) = ". Moreover,
H# "&TC (x +(1 ! "+ 8T (x
ez (LHE ke VO LRED 1 4 e,
» X G (X HE)
is strictly positive in the interval  (Hg,1! %+ %!). Hence, ug < ". O

D Proof of Theorem 2

Lemma 8. Forall x %(%!,1! %+ %!), G- (x,heg) < G (X Ug).

=C =C
Proof. Notice brst that < "implies that (&G (e He) o vy _ ! <"1 & But (8&8DG " (e He) o
root. Nofice brstthatl Ue implies tha Clhe He) Clhe He) u Gl He)

"1 &ifand only if G° (Mg, Me) < G (HE.Hg).

—C
Consistency also requires that for all x % (%!,1! %+ %!), (&g (XHEe) = y Hence, g° (x,Hg) =

g(xH E)
2r9(xpe) and @ (x,Mg) = 22X g(x,ug). Therefore, G (x,He)! G° (x,Hg)> Oat x = ug, and
this di!(erence attains its maximum at x = "! &
— —C
;G re) ! B (xme) | . ° trarx
= 7 (x ! X, = g(x,
> g (x,He)! T~ (X,HE) AT g(X,He)

" #

' 6' . &gc i _ —
Notice that (XHE?X Ce) < Oforall x> "! & and since G (X, uE) ! c°© (x,ug) =0 at
x =11 %+ %!, we conclude that G' (X, Mg) > G° (x,mg) forall x %(%!,1! %+ %!). O

Lemma 9. Forall x %(pug,1! %+ %!), GC (x,ug) <G' (x,pug).

Proof. As ug < ", we know that G€ (ug,pe) < G' (ug,ug), since % < " if and only if
G® (Me . HE) <G' (ME ., HE).

C
Consistency also requires that for all x % (pug,1! %+ %!), %@“Eg) = x. Hence, G' (x,ug)!
G (x,pg)>0 E'it X = Ug, and this di ! erence attains its highest value at x = "
. G' (x,ug)! G® (x,uE) "X
" =g (xue)! g% (xue)= WQ(XYHE)

' | C
Notice that (G- OB EIECTHED) o o g x > ", and since G' (x,pg)! G® (x,ug) =0 at x =

X
1! %+ %!, we conclude that G' (x,pug) >GC (x,ug) forall x %(ug,1! %+ %!). O
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E Proof of Theorem 3

Consider the function * (1) $ # (W, 1), with ©u> %! as debned in Appendix C; i.e., Equation 17 evaluated
at the diagonal, with:
("1 &T° (xy)+ &
("1 &G (xy)+A ! "+ &G (xy)
We know that pg = * (Mg ). Totally di ! erentiating this expression, we get:

#(xy)=

gue = (L DA #) G (eupe) oo #(A1 "+ D), T (e te)

G (ME,HE) % G (Mg, He) %

d%+ *" (He) dHe

and therefore:
(8&1)1&() ' G° | (@&&!)' G

dl,lE G : S
= . 36
&% 1 (e) ©0
The factor ———+— emphasizes that as %has a direct e! ect on G® and G' , it must a ! ect the entry-level

1&) "(ne)
reputation, which in turn a ! ects the reputation distributions GC and G' and hence #. But as we proved

before, *"(ug ) = 0 and therefore the indirect e ! ect vanishes. Hence, we must restrict attention to the
direct e! ect.

+ &C =l
As in Appendix C, ~S— and -~S— are the solution of an integral-equation system debned as:

} I .. 1
.aC . I.-.r.- ;7
5 (xy)=0 i;G 2 (x,y)
‘G i
. &C . o ) 1
B (A G R T e (O LR TG R T
il , .
JOO LS (y) fu (RO R) F‘X“’du+ OO ST (1 y) L ( (1)) F‘*“’du
(37)
We know that:
o | = &L (by depnition);
"E(xy) - R " e L E(XY ) && ! & X ' F(XY)
¢ —x = W(x&"%)(l&"w%&x)vWh'le = 1&"X X
R(xr ) _ (L&R(r)H(xr)&1 . Cp(xr) _ && 1 & x (X[l )
T T (ErrewR(E (e » While = e Ty
e g%, y Oi,; can be obtained by taking the derivative of 6&1 y Gy.y With respect to x:
3 4
, E(X, "l %+ %! 1! ") %!
o ey = SOV TR 6e (vt ey + 6l o L (e (k)
o, ' 0 iy
"L %+ %) FOY) BT 11 ") - Fvy) BT
+%&) o (B(x1),y) B )dFH+( 7 ) o (B(xr),y) MdFL
! 0 , X I & 0 , X
and
o ,F(X.y)3"%(1! ') ~c @ mar %y ‘
O+ (X, Y) = X 17 "+ &Gt (y.y)fu (F(xy)+ WGI (v, y)fL (#(xy))
o] o]
"%H(L! ) T ROV o R (X,T) @y @ s ey CR(X,T)
+ (X, 1), dFy + 3 (X, 1), dF
T & g (B(xr),y) X H 1T "+ & . g (B(xr).y) X
Hence, the direct e! ect of a change in %can be written as:
/ ;1 . A N
e O rxy) | O rxy) s v g
0 LS 20m=t e e yeRt e mn) R § LT
< 3 4 -

11 % g (x)
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i 1 "" i#+ #$ ) # f '#(1 $)
where T = 88 gng TR o 188 gyt we also know that steady-state distri-
butions satisfy:
@MY@ % "0 kixy) O rxy)

G (xy)! G (xy)= G' (r(xr),y)dF ! i GC (1 (xr),y)dFy

"r&YAr "+ & o

~C
and that consistency requires that W = X. Thus, the direct e ! ect can be rewritten as:

/ ,1 ] _ ;

‘TC, " " ( ;1 " X
0o T w2 _, crear gty | &° Dgr " & x =T
BN xy)="t ——r— (x.y)! (x.y) T g(x.y) &k
G
(39)

Also as in Appendix C we repeatedly iterate the operator T to bnd the sign of 36 starting from @02 y G'O
bthe steady-state distributions obtained with y = pg and the initial value of %

8G{ (xy)
Gr(xy)
&G§ (vy) S ; ; S ——
Solyy) After iterating T with a di ! erent level of %we obtain G; = Gg; moreover, for an inPnitesimally
small change in % the di! erence between them is exactly %d% Hence, we can debne@? as:

Let denote the t-th iteration of T as étc and G{ , and debne #; (x,y) as . Then y = #o (y,y) =

—# —# ,THS
Gi (x,y)= Go(xy)+ % (x,y) d%
70 "Gy
It follows that:

e -GS R S .
] 1
Zooxey)= 29 (xy)+o(xy) o, % +)oxy) &«
G Gy ©1g&r] T2 &+ 1

(_, _ )
where . o (X,y) $ % G:)(x,y) ! Gg (x,y) d%> 0and)o(xy) $! &&15&#@0 (x,y) d%< O.
When we evaluate this expression in the new value of %we obtain:
G1(xy) =Go(xy)+ )o(xy)
and hence:

("1 &5 (YY) o VoY) * &
G1(y.y)

#1(y,y) =

(881)G (yy )+ !

where = #o(y,y) = y. Rearranging, we obtain:

Go(yy)
#1(y,y)= #o(y,y)+ o (uy)
G1(xy)
Iterating the operator T (considering the new value of % we obtain:
S & T sC I T Cox
2Voxy)= 0 Y (y)+ e (xy) %% +)e1(xy) 16k
G, ta1 vy T &+ 1
with: B B
Gt (Xy)= Gre1 (X y)+ )ta1(Xy)
where
% w00  FOGH)
St(xy) $! cter (Y) (@ %+ %l x)fy (R p)+(x ! %)L (£ (X, 1)) wa 0
y )
and
® #x0 PO
Jr(%y) $ (e (WY)(FL (FOGU) ! Tr (PG ! Dter (WY) (WP (FOGCR) +(QE ) (R (X)) Tdu
y ,

for all t> 0. Thus, we conclude that for all the elements of the sequence, #: (y,y) can be written as:

#1a1 (YY) Gra1 (Y, ¥) + . ta1 (Y, ¥) + Y)ta1 (V,Y)
Gra1 (Y, Y)+ )ta1(¥,y)

#e(y,y) =
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Moreover:

od ) c t&1 1 t&l X
1
25y = 2 )y L (xy) & + )y
Gy Go i=0 CTger] i =0 T& &+ 1
with:
- - &1
Gt (xy)= Go(xy)+ )j(xy)
i=0

Since #¢ (y,Y) = Yy, we Pnally obtain:
t& 1

&L ()
Gt (v.y)

and hence we conclude that for all t> 0, #¢ (y,y) > #0(y,Y), and therefore dg'—E > 0.

#(y,y) =#o(y,y) + > #o(y,Y)

F Proof of Lemma 4

Observe that Pr( exitat t+1|ut,"t) = F# (F(He, Ht)). The brst-order stochastic dominance assumption
implies directly that Pr( exit at t+1|pt,C) = Fy (# (M. Mt)) # FL (F(ME, Ht)) =Pr( exitat t+1 |ue, ).
On the other hand, we have:

FRe. ) _

, Pr(exitat t+1|pe,"t) ,
= fu (F ,
T # (F (HE , Ht)) T

sincew < 0. Also, we have that Pr( exitat t+1|ut) = peFy (£ (Mg, 1))+ ! pe) Fo (8 (HE L Ht)).
As a consequence,
, Pr(exitat t+1 s )
( B - (Rt R+ (e + (@1 pof) SEHERD g
» Mt , Mt
Regarding signals, we have that Pr( exitat t+1]|r¢,'t) = G* (@ (ug,rt)). Hence,

,Prexitat t+1]r,"t) _ ,G* | g(Ug,rt) <0

Tt , R It
§ince '*(Xf:’) < 0. Also, the unconditional (on type) probability of exit js given by: Pr( exitat t+1|ry) =
P (" 1) GC (r(Me,r))F (T %("! 1) G! (B (He,Tt)) |, SO that:

. 3 4
, Pr( exit at t+1\r1): aRrd !)),Gc ST ot !»,G| ,ﬁ(x,rt)<0
It B B , It

G Proof of Theorem 5

Using Equations 23 and 21 we can write the di ! erence§§+1 x)! Glaﬂ (x) as:

0 r(x )

. ,
mCmI (XM E) )
— GS (g (x,r)) dFy ! Gh (# (x,1)) dFL
0

=C =1
G x)! G x)y = Q!N —-—7FT—
ar a rng+1 m!a+l 0
« «
However, Oﬁ(x’” E) GC (p(x,r)) dFy < oﬁ(x'“ €) GS (j(x,r)) dFy for all x % (%!,1! %+ %!) because
GS (ft (x,r)) is decreasing in r and Fy (r) <F (r) for all r %(0, 1). Hence:
mi(i:mla 0 ”"(XvUE)(

_ 7 )
Gou (0! Goy () < (1! W GS (r(xr) ! Gh(r(xr) dFL

Hence, if GS (g (x,r)) # GL (g (x,1)), then Gesy (X) < Gusy (X) for all x % (%!, 11 %+ %).

When a=0, GS (g (x,r)) ! G (g(x,r))=0,sothat Go (x) < Gy (x) for all x %(%!,1! %+ %!). On
the other hand, within the population of incumbents of age at least 1 ( a > 0), if the prior reputation
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conditional on an event A brst-order stochastically dominates the prior reputation conditional on an
event B, then the posteriors are also ordered by brst-order stochastic dominance in the same way:

Pr(m<x |A)# Pr(F<x |B) ( Pr(p<x|A)# Pr(p<x|B) (40)

To see this, simply observe that P(EX 'Fﬁ()%ir( 52)5 18) 5 PHIEX lF"Br()éir(ng)E 1B) Y  Pr(p<x|A)#
P B)(L &Pr([<u g [A)+PI( I<u g |A)&PH IR £ [B). o = -
(i 18)G &PrOEy e IADAH o e )EPUIL EB); since 0 < Pr(Ei<pel|A) < Pr(E<pelB) < 1,

P B)(1 & Pr( p= A))+Pr( B A)& Pr( s B
o 18 )LE PR e IR ol e INEPUIU E18) ¢ pr (1< x [B), sothat Pr(p<x |A) # Pr(i<x [B).

In particular,
=C —I
Gart (X) # Gaup (¥) ( GFiy (X) # Ghyy (%) (41)

Hence, the prior reputation of a competent of any cohort pPrst-order stochastically dominate that of the
inept of the same cohort.

H Proof of Theorem 6

mg
mC+ml
fraction of competents in cohort a. Using this and collecting terms, we can re-write Equation 23 as:

Let pa denote the interim reputation of a brm of age a. Consistency requires that E [pa] = the

T : 3 4" «
o () _ IS 11§ SO E) GE (p(x, 1)) dFy
[} A Nl Ce(hE) ol (g
Ga+1 (X) a *la 0 Gy (gt (x,r)) dFL
where
- 1! %+ %)
: (L1 %+ %)+ o6t 2TIka)
%(1! 1)

~
®—
1

1& E
W1l 1)+ (1! %!)%

The age! a+1 population-wide distribution can thus be written as:

_ Ortene) 0
Ga+1 (X) = E [Ha] . Ga (B(X,r))dFy +(1 ! E[Ha]) .

F(X,H

)G'a(ﬁ(xyf)) dFe.

From the proof of Theorem 5 (Equation 40) we know that:

—# —#

Gass (X)# Ga (¥) ( Ghar (x) # GF (x)
and . .

Ga+1 (X)# Ga(x) ( Ga+1 (X) # Ga (xX)
We brst prove that:
Lemma 10.

—# —# = = ) (—# —# = = )
Ga+r (X)# GL(x) and Ga+1 (X) # Ga(X) ( Gasp (X) # Gaup (X) and Ga+2 (X) # Ga+1 (X)

Proof. By hypothesis, GS,; (g (x,r)) # G5 (f(x,r)) and G, (#(x,r)) # GL (g (x,r)). Hence, Gh, (x) #
1%, «Oﬁ(x'” e) GS (n (x.1) dFy * !1! 1%, «Oﬁ(x*“ €) Gl (g (x,r)) dF. . The right hand si)de can be
\INritten as: ..Ggﬂ )+ 1EL 02 «O"L(X’“ €) GS (j(x,r)) dFy ! «O"L(X’“ €) Gl (@ (x,r)) dF. . Hence,
ELVIE > 0is asu' cient condition for 6;2 (x) #Iéiﬂ (x). JIndeed, by hypothesis, Ga+1 (X) #

Ga (x), which implies that E [Ha+1]1>E [Ha], and hence /¥, ! /# > 0 for both types.

The proof for the unconditional case is analogous. |
We complete the induction argument by showing that:
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Lemma 11. G¥ (x) # G§ (x) and G1 (x) # Go (X)

Proof. Follows immediatly from the fact that in ~ a =0 both distributions are degenerate at pg, while in
a =1 both distributions are non-degenerate, with support starting at HE . O

Finally, the initial prior distributions are also ordered in the same fashion:

Lemma 12. Gj (x) # G, (x) and G2 (x) # Gy (x)

Proof. The proof follows a similar argument than that of Lemma 10 above. O
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