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Reputation-driven industry dynamics!

by Bernardita Vial†and Felipe Zurita‡

December 3, 2012

Abstract

This paper studies the entry-exit dynamics of an experience good industry. Con-
sumers observe noisy signals of past firm behavior and hold common beliefs regarding
their types, or reputations. There is a small chance that firms may independently
and unobservably be exogenously replaced. The market is perfectly competitive:
entry is free, and all participants are price-takers. Entrants have an endogenous
reputation µE . In the steady-state equilibrium, µE is the lowest reputation among
active firms: firms that have done poorly leave the market, and some re-enter under
a new name. This endogenous replacement of names drives the industry dynamics.
In particular, exit probabilities are higher for younger firms, for inept firms, and for
firms with worse reputations. Competent firms have stochastically larger reputa-
tions than inept firms both in the population as a whole and within each cohort,
and thus are able to live longer and charge higher prices.

JEL ClassiÞcation : C7, D8, L1
Keywords : reputation, industry dynamics, free entry, exit and entry rates

1 Introduction

By now there is a large empirical literature that studies the dynamics of Þrms within an
industry. Among the most salient patterns that have consistently been found are1: (1)
The presence of sizeable entry and exit rates even in industries that are scarcely growing,

! We are grateful to Axel Anderson, Francesc Dilme, Juan Dubra, Juan Escobar, Claudio Fern‡ndez,
Hugo Hopenhayn, David K. Levine, CŽsar Martinelli, and Federico Weinschelbaum for their helpful com-
ments. We are also grateful to conference participants at the Association for Public Economic Theory,
European and Latin American meetings of the Econometric Society, Jornadas de Econom’a del Banco
Central del Uruguay, Jornadas Latinoamericanas de Teor’a Econ—mica , Midwest Economic Theory Meet-
ings, Sociedad de Econom’a de Chile , Spain-Italy-Netherlands Meeting on Game Theory, World Congress
of the Game Theory Society, and seminar participants at Universidad de Santiago , Universidad de Chile ,
and PontiÞcia Universidad Cat—lica de Chile . This paper shares content with an earlier manuscript en-
titled ÒOn Reputational Rents as an Incentive Mechanism in Competitive Markets.Ó Financial support
from FONDECYT grant #1121096 is gratefully acknowledged.

  Instituto de Econom’a , PontiÞcia Universidad Cat—lica de Chile . E-mail:bvial@uc.cl
àInstituto de Econom’a , PontiÞcia Universidad Cat—lica de Chile . E-mail:fzurita@uc.cl
1The empirical literature has also given a great deal of attention to Þrm growth and Þrm size. We

will abstract from this issue by assuming that all Þms have a capacity constraint of une unit.

1



with large heterogeneity across industries (Dunne et al., 1988); (2) younger Þrms are Ð
ceteris paribusÐ more likely to exit and also (3) more likely to charge lower prices (Foster
et al., 2008).

A recent strand of the literature adds a number of regularities related to ÞrmsÕ reputations.
McDevitt (2011) focuses on an industry where Þrms with widely di! erent track records
compete with each other, and where exit, entry, and name changes occur frequently.
Similarly, Cabral and Hortacsu (2010) study the reputational mechanism of eBay, an
online auctioneer. These studies conÞrm previous Þndings, and add that: (4) the Þrms
that are more likely to change names or exit are those with worse or shorter track records
(McDevitt, 2011); and (5) the probability that a given seller will exit the market increases
as its reputation worsens (Cabral and Hortacsu, 2010).

This paper presents a model of an industry in which the dynamics are driven entirely by
reputation. The model is fully consistent with the Þve patterns above, and yields novel
theoretical predictions as well. As in those industries analyzed by the recent empirical
literature, in our model the active Þrms are not only heterogeneous in age (as deÞned by
the number of periods that have elapsed since the Þrm began operating under its current
name), but also within any age cohort they are heterogeneous in both records (histories)
and prices.

Ours is an adverse selection model with imperfect public monitoring. Reputations are
the common belief regarding a ÞrmÕs type. There is perfect competition in the sense of
Gretsky et al. (1999): Þrms are price-takers, and there is free entry. The incumbentsÕ
reputation is the Bayesian update of a common prior given an observed history of (imper-
fect, public) signals; the entrantsÕ reputation is also a consistent belief. Incumbents have
the option to re-enter the market under a new name. In the non-revealing, pure strategy
equilibrium that is our focus, they choose to exercise this option whenever their reputa-
tion falls below a threshold, so that (5) holds. This threshold coincides with the entrantsÕ
reputation. In the steady state, there are exit and entry ßows while the industry as a
whole is stagnant, as in (1). Competent ÞrmsÕ reputation stochastically dominates that
of inept Þrms; still, full separation is never achieved. Thus, the option to change names
is used more intensively among the inept, so that (4) holds. As a consequence, each time
the option is exercised the reputation distribution of any given cohort shifts to the right,
and thus older cohorts have stochastically better reputations. In turn, this also implies
that the probability of exiting the market is decreasing in age, as in (2). Moreover, since
prices are increasing in reputation, (3) holds. Even though the reputation of older Þrms
Þrst-order stochastically dominates that of younger ones, there is always heterogeneity
both within and between cohorts; in fact, the reputation distributions for all cohorts have
full support.

The theoretical literature has investigated a number of possible explanations for the Þve
patterns above. One strand asks whether such dynamics can be the result of individual
productivity shocks in a perfectly competitive market for a homogeneous good (the semi-
nal paper of Hopenhayn, 1992, stands out). A related strand looks at the combination of
productivity shocks and Þnancial frictions (Cooley and Quadrini, 2001, Albuquerque and
Hopenhayn, 2004, Clementi and Hopenhayn, 2006) or labor market frictions (Hopenhayn
and Rogerson, 1993). While (1) and (2) are consistent with this view, the law of one
price is at odds with (3). Also, the empirical concepts of reputation and track records do
not have a theoretical counterpart in this setting. The same is true in Fishman and Rob
(2003), a paper in which the dynamics of the industry are driven by consumer inertia in
a context of search costs and older Þrms sell more because they have a larger customer
base.
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On the other hand, there is a large body of theoretical literature that looks at the creation
and maintenance of ÞrmsÕ reputations in markets for experience goods (e.g., Klein and
Le" er, 1981, Fudenberg and Levine, 1989, and Mailath and Samuelson, 2001, to name
just a few; Mailath and Samuelson, 2006, and Bar-Isaac and Tadelis, 2008, present com-
prehensive expositions of the literature.) This literature discusses primarily the monopoly
case. In spite of this, some papers still manage to look at entry and exit decisions. For
instance, Bar-Isaac (2003) assumes that the Þrm has the option to leave the market.
When the Þrm knows its own type, in equilibrium the high-quality Þrm never leaves,
while the low-quality Þrm plays a strictly mixed strategy at low levels of reputationÐi.e.,
below some threshold. The mixed strategy is such that the post-exit reputation of any
Þrm that has crossed the threshold becomes the threshold. Having a strictly positive
probability of exiting, the low-quality type eventually leaves; this implies that there is
complete separation in the long run. Board and Meyer-ter Vehn (2010) extend this anal-
ysis by incorporating moral hazard and the possibility of entry, and focus their analysis
on the investment and exit decisions over the life cycle of the Þrm. In this equilibrium,
the entry-level reputation coincides with the threshold as well.

Within the strand of the literature that looks at reputation dynamics in competitive mar-
kets, some papers focus on markets in which the information ßow to potential customers is
quite limited, and fundamentally di ! erent from that to customersÐnamely, private mon-
itoring; Hšrner (2002) and Fishman and Rob (2005) stand out. Instead, we want to
examine markets where informationÐalbeit imperfectÐßows constantly to potential cus-
tomers as well; for instance, the eBay feedback system (Cabral and Hortacsu, 2010), or
the complaint record of plumbing Þrms (McDevitt, 2011). Indeed, the internet-related
technological progress turns an increasing number of markets fall into this category by
providing means of communication among customers; think for instance of the travel
industry with TripAdvisor, Expedia, etc.

Tadelis (1999) is one of the Þrst papers to formally analyze competition under imperfect
public monitoring. It presents an adverse-selection model with a continuum of Þrms.
However, the author focuses on an equilibrium where Þrms leave the market after one
bad outcome; this means that active Þrms either donÕt have any history (they are new), or
they must have impeccable records. Tadelis (2002) develops a similar model, under moral
hazard. While this kind of model can explain certain stylized facts of industry dynamics,
like the di! erences in pricing and probability of exit between cohorts, it cannot explain
the observed heterogeneity in these variables after controlling by age: all Þrms of the
same age must have the same records and reputation. In particular, it cannot account
for observations (4) and (5) beyond age.

Our model recasts Mailath and Samuelson (2001)Õs in a Walrasian environment, obtaining
heterogeneous reputations even in the steady state (as in Vial, 2010, but considering
entry). In our model, the entry-level reputation and the reputation distributions are
endogenous. These variables turn out to be important determinants of the industry
dynamics, as the rate of endogenous exit (hence the exit-entry ßow) is tied to them.
Hence, our paper complements recent literature on reputation under competition that
features heterogeneous reputations, where some papers assume the entry-level reputation
to be exogenous (e.g., Ordonez, forthcoming) while others obtain it independently from
the reputation distributions because of their focus on mixed strategies (e.g., Atkeson
et al., 2012). When analyzing industry dynamics, the di! erence between mixed and pure
strategy equilibria becomes important: in the former case, there are incumbents among
those with the entrantsÕ reputation while in the latter only entrants carry the entry-level
reputation. In each case the resulting age distributions of Þrms are therefore di! erent.
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The entrantsÕ reputationµE is a consistent consumer belief. This consistency condition
ties together consumersÕ belief updating, the reputation distributions,µE and the ÞrmsÕ
strategies in a non-trivial fashion. The reputation of entering Þrms must coincide with
the fraction of competent Þrms among them. However, the mass of competent Þrms that
choose to change their names and re-enter the market depends precisely on the level of
reputation with which they would re-enterÐand so does the reputation distribution. We
prove that such a consistent entry-level reputation exists, and moreover, that it is unique
(Theorem 1). Within this equilibrium, the determinants of the entry-level reputation
µE are purely informational.2 We Þnd that the entry-level reputation is increasing in
the exogenous replacement rate (Theorem 3): industries in which competence is more
transient (for instance, because of a high rate of technological development), the entry-
level reputation will be more demanding.

We also Þnd that highly reputable Þrms are less likely to cross theµE barrier during any
given time interval (Theorem 4), so that ÒbetterÓ names last longer, in a stochastic sense;
the same is true of competent Þrms, both in the population as a whole (Theorem 2) and
within each cohort (Theorem 5). As a consequence, as time goes by each generation or
cohort of Þrms improves its reputation (Theorem 6).

The rest of the paper is organized as follows: Section 2 presents the model. Section 3
introduces the equilibrium concept. Section 4 discusses existence and uniqueness issues;
it is technical and can be skipped without loss of continuity. Section 5 examines the
relationship between the replacement rate and the turnover ratio. Section 6, the core of
the paper, analyzes the dynamics of the industry in the steady state.

2 The model

2.1 Preliminaries

We consider an inÞnitely repeated game in which, at every datet = 0 , 1, 2, ..., a market
for a given service opens. Firms are long-run players, while consumers are not. Instead,
at every stage there is a di! erent generation of short-lived consumers.

The service is an experience good as per Nelson (1970): its quality is ex ante unobservable
to buyers. We assume that there is no communication among consumers. Since consumers
only live for one period, the information each one obtains as a result of consuming the
service is not transferred to the next generation, but lost altogether. Hence, quality is also
unobservable ex post. Nevertheless, after consumption takes place, an imperfect signalr
of the quality each active Þrm provided is publicly observed.

Each generation of consumers is of mass 1. In contrast, there is an unlimited supply of
potential Þrms. Each individual may consume or produce at most one unit per period.
Hence, while all consumers may purchase, not all Þrms will be able to sell. We call Òactive
at tÓ a Þrm that produces at timet, and ÒinactiveÓ a Þrm that does not. We will assume
that consumers are homogeneous, and that their willingness to pay is high enough so that
they all buy; as a consequence, the mass of active Þrms willÐin equilibriumÐbe 1.

2In contrast to Bar-Isaac (2003), Board and Meyer-ter Vehn (2010) and Atkeson et al. (2012), in our
model the determination of µE is independent from the zero-proÞt condition.
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There are two types of Þrm: competent(C) and inept (I ). Competent Þrms are those
that can only produce a high-quality variety of the service, while inept Þrms can only
produce a low-quality one. The total mass of competent Þrms is denoted by! , constant
over time and less than 1.

Each active Þrm is subject to the possibility of dying. A dead Þrm is replaced immediately
by a newly born Þrm. While consumers are aware of this replacement process, they do
not observe it. The process is assumed to be i.i.d. across time and Þrms." denotes the
probability of dying, and # the probability that a dead Þrm is replaced by a competent
one. This replacement process ensures that throughout any history there is never almost
certainty about any ÞrmÕs type. In e! ect, Cripps et al. (2004) shows that the adverse
selection model with imperfect monitoring needs a mechanism for replenishing uncertainty
about types in order for doubts about playersÕ types to persist in the long run. Di! erent
mechanisms have been studied. One of them is given by information frictions, such as
limited memory (Liu and Skrzypacz, 2009), coarse observability (e.g., in Ekmekci, 2011, in
which consumers observe discrete ratings rather than full histories), or costly observation
of records (Liu, 2011). A second, related approach is that of Tadelis (1999) and Tadelis
(2002), where consumers forget certain aspects of a history (what he calls Òreputation
reductionÓ), with the same e! ect. Another mechanism is provided by ÒtremblesÓ, as in
Levine and Martinelli (1998). The approach we follow is the one advanced in Mailath
and Samuelson (2001). By adding an unobservable replacement process, consumers are
never certain of who they are dealing with. The replacement of exiting Þrms may be
plainly exogenous (our choice) or endogenous as it is in the literature that studies the
possibility of trading names.3 If instead of a replacement process we had chosen a process
of unobservable type changes, the dynamics of the industryÐwhich is the focus of our
paperÐwould be exactly the same.

On the other hand, a mass$ " 1 of competent Þrms is also born each period among
inactive Þrms. Note that for the total mass of competent Þrms to be constant over time,
it is necessary that # = !" ! #

! .

Types are privately observed. Thus, this is a pure adverse selection model. Hence, from
the consumersÕ perspective, the probability of receiving a high-quality service is the same
as the probability of facing a competent Þrm.

Firm names play a key role in our model. Consumers only observe each ÞrmsÕ name and
the history of public signals since the last spell of uninterrupted use of that name. They
donÕt know if that name has always belonged to that Þrm, or if it was Þrst used by some
of its predecessors. In that sense, a ÞrmÕs reputation is really the reputation of the name
they are currently using.

When a name is not used in one period, it is forgotten by consumersÐtogether with its
associated signal history. Then, should a Þrm become inactive for one period or longer,
consumers will forget its history. The next time the Þrm becomes active, it will have to
do so under a new name. Hence, maintaining a name requires remaining active without
interruption. In addition, the Þrm may also choose to change its name at the beginning of
each stage; we assume that this is done by exiting the market and reentering immediately.

Thus, a Þrm may have di! erent names at di! erent times according to the (endogenous)
name-changing process. Moreover, the same name may pass from one Þrm to another

3See, for example, Tadelis (1999) and Mailath and Samuelson (2001). A di ! erent strand of this
literature looks at the case in which trading names is observable, as in Wang (2011) and Hakenes and
Peitz (2007).
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under the (exogenous) replacement (or birth-death) process, in which the latter inherits
the formerÕs history.

We assume consumers have common priors. The timeline for the stage game is shown in
Figure (1).

Staget begins Trade Replacement
¥ ¥ ¥ ¥ ¥ ¥

Exit/entry Signal r t Staget ends

[prior µt ] [interim µt ] [posterior µt +1 ]

Figure 1: Time line for the date-t stage game

ConsumersÕ beliefs refer to the probability that a given name belongs to a competent
Þrm, conditional on all available information. We refer to this consumer belief as the
nameÕs reputation. At the beginning of each stage, each incumbent is endowed with a
prior reputation µt . Then, should the incumbent decide to produce (be active) att, it
must choose whether to change its name to a new oneÐwhich will carry the reputation
associated with a name with no history µE Ðor keep its old name and prior reputation
µt . We will refer to this as the ÞrmÕsinterim reputation, and denote it by µt . This is
the reputation the Þrm will have when the market opens. After trading, the signal r t

will be publicly observed, and the replacement process takes placeÐyet it is unobserved
by consumers; the Bayesian update of the interim reputation givenr t , which takes into
account the possibility of having being replaced, will be the ÞrmÕsposterior reputation.
This posterior will be the next periodÕs prior, and so it will be denoted byµt +1 .

2.2 Signals

The signal r refers to any piece of information that is publicly available to consumers.
For instance, if the Þrms were schools,r could be the score percentile on a standardized
test; if the Þrms were academic journals,r could be their impact factor; if the Þrms were
health care providers,r could be their medical malpractice track records; if the Þrms were
car makers,r could be the consumer reports, and so on.

The signal lies in the open unit interval: r # (0, 1). When a Þrm provides high quality,
its signal is distributed according to the c.d.f. FH ; when it provides low quality, it is
distributed according to the c.d.f. FL . The p.d.f.Õs are denoted byf H and f L , respectively.
We assume that a higher signal makes it more likely that a Þrm provided high quality:

Assumption 1 (Monotone likelihood ratio) . The likelihood ratio R (r ) $ f H ( r )
f L ( r ) is a

monotonically increasing bijection from (0, 1) to (0, %).

This assumption implies that FH (r ) & FL (r ) for all r , this is to say, the signal conditional
on H Þrst-order stochastically dominates the signal conditional onL .
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2.3 Firms

At every stage t, each Þrm chooses whether to produce or not (i.e., remain active in the
case of active Þrms, or enter in the case of inactive Þrms). We denote byqt # { 0, 1}
the production level. In addition, those active Þrms that choose to produce must decide
whether to keep their previous name or change it (by exiting and reentering immediately
at no cost). We denote by nt = 1 the decision to keep the name, and bynt = 0 the
decision to change it. Those Þrms that were inactive do not have this choice.

The date-t proÞts %t are given by:

%(µt ) =
!

p(µt ) ' c if qt = 1
0 otherwise

(1)

wherec is the production cost, andp(µ) the competitive price for a service that is of high
quality with probability µ. µ reßects consumersÕ beliefs, and is endogenously determined
in equilibrium, taking into consideration the equilibrium naming and production policies.

The production and naming decisions jointly maximize the expected, discounted proÞts:

(1 ' &)
""

t =0

(1 ' " )t &t E [%t ] , (2)

where &# (0, 1) is a discount factor. The expectation depends on the ÞrmÕs type, as this
a! ects the signal distribution.

Firms have heterogeneous and ever-changing reputations. LetGt denote the cdf of prior
reputations at the beginning of staget of those Þrms that were active att ' 1. Stage t
begins with ÞrmsÕ exit and entry decision.Gt denotes the cdf of interim reputations of
those Þrms that chose to be active att. Thus, Gt and Gt di! er because some active Þrms
chose to exit, some to re-enter, and some inactive Þrms decided to enter (the last two
with a reputation µE ).

The superscripts C and I denote the corresponding subpopulations of competent and
inept Þrms. Lemma (3) below proves that there is a unique steady-state pair of reputation

distributions G
C

and G
I
.

2.4 Consumers

Consumers are homogeneous. Their willingness to pay for a high-quality unit of the
service is ' (with ' > 0), while for a low-quality one it is normalized to zero. Hence,
when facing a reputation-µ Þrm, the expected utility of buying is:

E [u] = µ' ' p, (3)

Consumers are indi! erent between two Þrms with reputationsµ and µ# if p(µ) ' p(µ#) =
' (µ ' µ#).
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2.5 Equilibrium: deÞnition

By equilibrium we mean stationary Markov perfect equilibrium. Each ÞrmÕs state variable
is the (commonly known) prior reputation µt , and its (privately known) type ( # { C, I } .
Recall that if a Þrm does change its name, its previous history becomes unobservable to
consumers; as a consequence, its reputation is notµt . Rather, consumers do not distiguish
among entering Þrms, regardless of whether they were active or not in the previous period.
Thus, all entrants will have the same reputation level, denoted byµE . Hence, the ÞrmÕs
reputation is given by:

µt = nt µt + (1 ' nt ) µE

DeÞnition 1. An equilibrium is:

¥ A naming policy function n (µ, ( );

¥ A production policy function q(µ, ( );

¥ A price function p(µ);

¥ A belief system, namely:

Ð A probability that a Þrm is competent

  µt = ) (µt ! 1, r t ! 1), the Bayesian update of the priorµt ! 1 given the signal
r t ! 1, for Þrms that were active in the previous period and kept their names

  An entry-level reputation µE , for Þrms that enter under a new name, and

Ð A pair of steady-state, population-wide reputation distributions
#

G
C

, G
I
$

for
active Þrms

such that:

E1. Beliefs are consistent,

E2. n and q maximize (2),

E3. ConsumersÕ choices maximize (3), and

E4. The market clears.

As is common in this kind of model, many equilibria are supported by di! erent o! -
equilibrium-path beliefs. For instance, there is a trivial equilibrium with no reputation-
building: All consumers believe only inept Þrms are active at all times, so that every active
Þrm has a null reputation and is indi! erent as to whether to produce or not. Instead,
we look at a reputational equilibriumÐan equilbrium where the reputation of each Þrm
is a! ected by its signals. SpeciÞcally, we are assuming that signals and only signals
a! ect the reputation of Þrms that remain active; in particular, the naming decision is
uninformative. As competent and inept Þrms with reputations higher than µE will keep
their name (see Section 3 below), the event that a Þrm keeps its name in the equilibrium
path is indeed uninformativeÐthere is no assumption so far. Firms with priors belowµE

will change their names. Should one such ÞrmÐcontrary to the equilibrium strategyÐkeep
its name, we assume that consumers wonÕt change their prior. For instance, they interpret
this deviation as an uninformative ÒtrembleÓ.4

4A few remarks are in order. First, any out-of-equilibrium belief that assigns a deviator a reputation
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3 Reputational equilibrium

Price function. Consumers must be indi! erent among providers. Thus, E3, together
with the assumption that consumers are homogeneous, implies that the price as a function
of µ is given by:

p(µ) = * + ' µ (4)

where * & 0 for consumers to buy. More reputable Þrms are paid higher prices.

Remark 1. With heterogeneous consumers, none of the main results would change. For
instance, if consumers varied in their willingness to pay, the equilibrium assignment would
be positively assortative, as in Vial (2010), and the price functionÕs slope would depend
also on the supply side, namely, the population-wide reputation distribution.

Naming policy. Writing the ÞrmsÕ optimization problem (2) for a type ( Þrm in re-
cursive form, we get:

v (µ, ( ) = (1 ' &) max
n,q

{ q(n (p(µ) ' c) + (1 ' n) (p(µE ) ' c)) +

&(1 ' " )
ö 1

0
v (q) (nµ + (1 ' n) µE , r ) + (1 ' q) µE , ( ) dF$

%
(5)

Notice that if the Þrm chooses not to produce at a given date, the state in the following
period would be (µE , ( ) should the Þrm continue to exist.

Lemma 1 (naming policy). The optimal naming policy is to choose the highest between
µ and µE :

n$ (µ, ( ) =
!

1 if µ ( µE

0 otherwise

Proof. Since the price is increasing in reputation, so is the ßow utility. On the other hand,
the law of motion ) is also increasing in this argument since it is the Bayesian update of
the a priori µ. Then, a Þrm that wants to produce prefers to do so at the highest available
reputation.

Observe that both types Þnd it optimal to act in the same way. Then, Þrms choose to
change their name as soon as their reputation falls below the thresholdµE . The value
function becomes:

v (µ, ( ) = (1 ' &) max
q

{ q(p(µ) ' c) +

&(1 ' " )
ö 1

0
v (q) (µ, r ) + (1 ' q) µE , ( ) dF$

%
(6)

where
µ = max { µ, µE } (7)

strictly smaller than µE also supports these equilibrium strategies. This is so because any such belief
makes it optimal for low-reputation Þrms to change their names. Second, there is no equilibrium in which
low-reputation Þrms that keep their names get a reputation higher than µE . If they did, then the inept
Þrms would also want to keep their namesÐand at these reputation levels the fraction of competents is
smaller than µE . Third, a mixed-strategy equilibrium in which some Þrms with a prior reputation below
µE keep their names and get a reputation equal to µE is conceivable. This is the sort of equilibrium
analyzed in Bar-Isaac (2003). This equilibrium is not essentially di ! erent from the one we focus on, since
it is still the case that the interim reputation is the maximum between the prior and the entry-level
reputation.

9



Production policy. Since there is an unlimited number of potential entrants, compe-
tition will drive prices down so that a positive mass of Þrms choose to stay out.

Lemma 2 (production policy) . The optimal production policy is:

q$ (µ, C) = 1 ) µ

q$ (µ, I ) =

&
1 if µ > µ E

0 or 1 if µ & µE

This is to say, all competent Þrms will always be active, and so will inept Þrms with a
reputation above the entry-level. The other inept Þrms will be indi! erent as to whether
to produce or not.

Proof. The value function (6) is increasing in µ for both types. On the other hand,

v (µ, C) > v (µ, I )

because the signals for a competent Þrm are stochastically larger than those of an inept
one. It follows that the free-entry condition applies only to inept Þrms:

v (µE , I ) = 0

It follows that market clearing is obtained when a mass(1 ' ! ) of inept Þrms are active.
The equilibrium price function (i.e., * ) is pinned down by the no-entry condition for inept
Þrms:

v (µE , I ) = (1 ' &)
!

(* + ' µE ' c) + &(1 ' " )
ö 1

0
v () (µE , r ) , I ) dFL

%
= 0

Beliefs. Each ÞrmÕs reputation is formed as the Bayesian update of a common prior
upon observation of the public history. As usual, we require beliefs to be consistent with
the equilibrium strategies.

At the begining of the game (t = 0 ), the mass of competent Þrms is! . From then on,
a Þrm with a given name dies with probability " and passes its name to a newly born
Þrm, which is competent with probability #. This process is hidden to consumers. Hence,
from the consumersÕ viewpoint, names are associated with underlying Þrm types that
may change according to the transition matrix in Table (1). This process, though, is
taken into consideration in the Bayesian update of the nameÕs priorµ given the signal r
as follows:

) (µ, r ) = "# + (1 ' " )
f H (r ) µ

f H (r ) µ + f L (r ) (1 ' µ)
. (8)

In e! ect, the probability that the Þrm under that name is competent at t (Pr ( ( t = C | µt ! 1, r t ! 1)$
) (µt ! 1, r t ! 1)) is made up of the probability that there was a previous Þrm that died and
was replaced by a newly born competent Þrm("# ), and the probability that the Þrm
survived (1 ' " ) times the conditional posterior probability of it being competent at t
after a signal r t ! 1.
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Type at t (( t )
C I

Type at t + 1 C 1 ' " + "# "#
(( t +1 ) I " (1 ' #) 1 ' "#

Table 1: Transition matrix for types under Þxed names

We now turn to the consistent entry-level reputation µE . It must coincide with the
fraction of competent Þrms among the group of entrants:

µE =
Competent entrants

Entrants
. (9)

Before the exit-entry process, the mass of competent Þrms is! ' $,5 the sum of:

¥ active competents that survived: ! (1 ' " )

¥ newly born competents that replace active competents that died:!"#

¥ newly born competents that replace active inepts that died: (1 ' ! ) "#

According to the optimal production and naming policies, the competent entrants are
then the sum of all competents whose reputation fell belowµE , (! ' $) G

C
(µE ), because

they change their names, and all newly born competent among inactive Þrms,$.

The inept Þrms whose reputation fell belowµE either change their names (i.e., exit and
re-enter), or simply exit to be replaced by other, previously inactive, Þrms. Regardless,
since market clearing (E4) requires the mass of active Þrms to be 1 at all times, then
the mass of entrants must equal the mass of exiting Þrms. Thus, the mass of entrants is
G (µE ).

The righ-hand side of Equation (9) can be written as:

+ (µE ) $
(! ' $) G

C
(µE ) + $

G (µE )
. (10)

Then, a consistent entry-level reputation µE is a Þxed point of+. Theorem 1 shows that
there is only one suchµE . Figure 2 depicts a numerical example of steady-state reputation
distributions, and the corresponding + function; the uniqueness ofµE is apparent.

5Recall that ! = " ! ! / " .
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Figure 2: Reputation distributions and consistent entry-level reputation

Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are ! =
0.1, " = 0 .5 and # = 0 .025. The resulting µE is 0.26.

In equilibrium, the net inßows of Þrms must be zero. If there is entry, there must be
exiting. When competent Þrms are born among inactive Þrms (i.e.,$ > 0), the entry-level
reputation µE must be strictly larger than "# , so that a positive mass of low-reputation
Þrms chooses to leave the market and stay out. The newly born competents will enter.

On the other hand, when no competent Þrms are born among inactive Þrms (i.e.,$ = 0 ),
the only Þrms that would enter are those that exited because of having a reputation
lower than the entry level threshold. Each individual ÞrmÕs reputation would change by
erasing its history, but the mean reputation of the group cannot change, as consumers are
aware of the fact that the entrants are the same ones that just exited. Then, this adverse
selection argument shows that the entry-level reputationµE cannot be larger than"# : A
consistent entry level reputation is one so low that nobody wants to change their name.

4 Existence and uniqueness

Section 3, assuming the existence of a non-revealing reputational equilibrium, character-
ized the equilibrium strategies. This section shows that there is a unique pair of steady-
state reputation distributions and a unique entry-level reputation which are consistent
with those equilibrium strategies.

We proceed in two steps. First, the entry-level reputation is assumed to be an exogenous
parameter y # (0, 1). Under this assumption, we explain how BayesÕ law deÞnes the
stochastic change over time of individual reputations, as signals accumulate. We also
establish the di! erence-equation system that deÞnes the dynamic process of population

12



distributions, for a Þxed, arbitrary, entry-level reputation y. Lemma 3 shows that there is
a unique steady-state distribution pair for competent and inept Þrms. This existence and
uniqueness result is important because we want to focus on steady-state equilibria. The
analysis also allows us to characterize those distributions: They are comparable under
Þrst-order stochastic dominance, are continuous and have full support.

Second, the entry-level reputationy is endogenized by requiring it to be consistent:y =
µE . Indeed, consistency implies that the fraction of competent Þrms among those active
Þrms whose histories grant them a given reputationµ is preciselyµ, and similarly, that
the fraction of competent Þrms among entrants is preciselyµE . These two properties
turn out to be closely related. In the steady state new Þrms will enter (and some old ones
will exit) if and only if new competent Þrms are born among inactive Þrms.

This section is technical, and can be skipped without loss of continuity.

4.1 Fixed, exogenous y

Rewriting Equation (8) in the likelihood ratio form we have:

) (µ, r ) = "# + (1 ' " )
R (r ) µ

R (r ) µ + 1 ' µ
. (11)

DeÞne the functions÷r (x, µ) and ÷µ (x, r ) from x = ) (µ, r ) as:6

r = ÷r (x, µ) * x = "# + (1 ' " )
R (÷r (x, µ)) µ

R (÷r (x, µ)) µ + 1 ' µ
, (12)

µ = ÷µ (x, r ) * x = "# + (1 ' " )
R (r ) ÷µ (x, r )

R (r ) ÷µ (x, r ) + 1 ' ÷µ (x, r )
. (13)

The Þrst function, ÷r (x, µ), says what the signal value should be for a Þrm of current
reputation µ to have a reputation x the next period. The second function, ÷µ (x, r ),
indicates what the reputation was in the previous period of a Þrm with a signalr that
currently enjoys a reputation x. Similarly, ) (µ, r ) is the reputation in the next period of
a Þrm that started o! with a reputation µ and whose signal wasr.

Appendix A shows that the end-of-period reputation cdf for each type of Þrm is thus
given by:

'
G

C
t +1 (x)

G
I
t +1 (x)

(

$

'
" (1 ! ! + !% )

" ! #
(1 ! " ) !%

" ! #
"! (1 ! %)
1! " + #

(1 ! " )(1 ! !% )
1! " + #

( ' « ÷r (x,y )
0 GC

t (÷µ (x, r )) dFH« ÷r (x,y )
0 GI

t (÷µ (x, r )) dFL

(

(14)

The exit-entry process changes these distributions in two ways. First, Þrms whose rep-
utation fell below the threshold y replace their reputation with y, so that the evolution
of µt is actually deÞned by µt = max { ) (µt ! 1, r t ! 1) , y} . All competent Þrms remain
active, since competent Þrms with a low reputation clean up their names and re-enter
immediately. Second, there is a mass$ of newly born competent Þrms.

6Assumption (1) ensures that $ is strictly increasing in r , so that higher signal values always improve a
ÞrmÕs reputation. Moreover, the image of $ is (%!, %! + 1 ! %) because the likelihood ratio is surjective:
$ (( %!, 1 ! %+ %!) " (0, 1)) = ( %!, %! + 1 ! %) . On the other hand, it is readily seen that $ is strictly
increasing in µ, and continuous. Hence, being onto, it is a bijection, and these implicit functions are
well-deÞned.
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These cdfÕs are transformed by the entry-exit process as follows:

GC
t +1 (x) =

&
0 if x < y

1
"

#
$ + ( ! ' $) G

C
t +1 (x)

$
if x ( y

GI
t +1 (x) =

&
0 if x < y

1
1! "

#
' $ + (1 ' ! + $) G

I
t +1 (x)

$
if x ( y

(15)

Note that when $ = 0 , GC
t +1 and GI

t +1 are simply the truncated versions ofG
C
t +1 and

G
I
t +1 , respectively, because the only change is the replacement of the lowest reputations

by y.7 On the other hand, when $ > 0, the mass of newly born competent Þrms enters
to replace an equal mass of currently inept Þrms.8

Replacing in (15) and rearranging, we get:

'
G

C
t +1 (x)

G
I
t +1 (x)

(

=

' (1 ' " + "# )
" ! # $ ' !%

" ! # $
! (1 ! %)
1! " + # $ ' (1 ! !% )

1! " + # $

( )
FH (÷r (x, y))
FL (÷r (x, y))

*

+

'
(1 ' " + "# ) !% (1 ! " + #)

" ! #
! (1 ! %)( " ! #)

1! " + # (1 ' "# )

( ' « ÷r (x,y )
0 G

C
t (÷µ (x, r )) dFH« ÷r (x,y )

0 G
I
t (÷µ (x, r )) dFL

(

(16)

DeÞne the right-hand side of Equation (16) as the operatorT in B [0, 1] + B [0, 1]Ðthe
product space of continuous bounded functions. The steady-state reputation distributions
G

C
and G

I
are a Þxed point ofT. SinceT depends parametrically ony, so doG

C
and G

I
.

Lemma 3. T has a unique Þxed point for any giveny # ["# , 1 ' " + "# ]. Moreover:

1. G
C

and G
I

are absolutely continuous with support["# , 1 ' " + "# ]

2. GC and GI have the common support[max { y, "# } , 1 ' " + "# ]

Proof. In Appendix B.

The steady-state distributions are continuous in the parametery, as they are the Þxed
points of a contraction.9

In equilibrium, then, there will be a unique pair of steady-state reputation distributions.
Their absolute continuity follows from the absolute continuity of the signal distributions.
The corresponding densities will be denoted bygC and gI , respectively.

7The reader may wonder about the consistency of the supporting beliefs in this case. It is odd that
consumers assign a reputation y to Þrms that in equilibrium achieved a lower reputation in the previous
round. After all, the entry-level reputation should be the mean reputation for entrants. Indeed, Lemma 4
below shows that any consistent entry-level reputation is such that no Þrm ever wants to exit the market,
namely, µE # %".

8Observe that when & > 0, it is necessary that the mass of exiting inept Þrms be su " ciently large so
that they make enough room for the entrants, in order for GI

t +1 to be nonnegative. This is a condition
over µE . Consistency will require this to be the case in equilibrium. However, this restriction has no
bearing on the convergence result we are about to describe.

9 See De la Fuente, 2000, Chapter 2, Theorem 7.18.
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4.2 Consistent y

When useful, we will stress the fact that G
$

depends parametrically on y by writing
G

$
(x, y); this is the fraction of type' ( Þrms with reputation no greater than x when the

distributions G
C

and G
I

have been generated under the cuto! value y. We write + (x, y)
accordingly as:

+ (x, y) $
(! ' $) G

C
(x, y) + $

G (x, y)
, (17)

This function is well deÞned for x > "# . Consistency requires thatµE be a Þxed point
of + in both arguments, i.e., µE = + (µE , µE ).

Observe that consistency also requires that the expected probability of being competent
in any information set be equal to the fraction of competent Þrms within that set. In
particular, the probability of being competent conditional on the ÞrmÕs reputation being
x should be exactlyx:

x =
(! ' $) gC (x, µE )

g (x, µE )
(18)

When new competent Þrms are born among inactive Þrms ($ > 0), the entry-level reputa-
tion must be high enough so that old Þrms wish to exit and make room for the newcomers.
Then, any consistent entry-level reputation must be larger than "# . This can be appre-
ciated in Figure 2. Theorem 1 below asserts that there is actually a unique suchµE .

Theorem 1. If $ > 0, there is a unique consistent entry-level reputationµE . Moreover,
µE # ("# , ! ).

Proof. In Appendix C.

Thus, when there is type change among inactive Þrms there is a continuous process
of endogenous name renovation. The next theorem establishes that the reputation of
competent Þrms is stochastically larger than that of inept Þrms, and hence this name
renovation is biased towards inept Þrms.

Theorem 2. Both before and after the exit-entry process takes place the reputation of
competent Þrms Þrst-order stochastically dominates the reputation of inept Þrms. That
is, for all x # ("# , 1 ' " + "# ), G

C
(x, µE ) & G

I
(x, µE ) and GC (x, µE ) & GI (x, µE ).

Proof. In Appendix D.

Using Equation (18), we obtain:

E [µ | µ < µ E ] =
(! ' $) G

C
(µE , µE )

G (µE , µE )
(19)

Thus, the consistency conditionµE = + (µE , µE ) can be written as:

µE = E [µ | µ < µ E ] +
$

G (µE , µE )
. (20)
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That is, the entrantsÕ reputation is the mean reputation that the Þrms that have just left
the market would have had if they didnÕt exit, increased by the fact that a mass$ of
inept Þrms that exit are replaced by the newly created competent Þrms that enter.

From Equation (20) it is clear that in the case of $ = 0 , where no new competent Þrms
are born among inactive Þrms,µE cannot be larger than "! . Indeed, Equation (20)
becomesµE = E [µ | µ < µ E ]. However, E [µ | µ < µ E ] < µ E for all µE > "! ; this is to
say, unless the eventµ < µ E is null, Equation (20) is inconsistent. It follows that the
consistent entry-level reputation µE satisÞesµE & "! . Without loss of generality, we
assume that µE = "! . When $ = 0 , then, there is no actual exiting or entry; as the
entrantÕs reputation would be worse than any active ÞrmÕs reputation, no matter how
bad the track records may be, no Þrm would ever want to change its name. This proves
that:

Lemma 4. If $ = 0 , the entry-level reputation µE is no greater than "! in equilibrium,
and there is no actual entry.
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Figure 3: Consistent entry-level reputation when $ = 0

Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are ! =
0.1, " = 0 .5 and # = 0 . The resulting µE is 0.05.

Summing up, this section proved that there is a unique steady-state reputation distribu-
tion for each type of Þrm GC and GI , and a unique consistent entry-level reputationµE .
When no competent Þrms are born among inactive Þrms ($ = 0 ), this µE is the lowest
possible, and as a consequence all Þrms want to keep their names at all times and there
are no exit-entry ßows. Any reputation is better than µE . Nevertheless, the threat of
entry is not without consequences; rather, it serves the purpose of keeping prices down.
On the other hand, when new competent Þrms are born among inactive Þrms ($ > 0), µE

is such that there are exit-entry ßows, and at all times a positive mass of Þrms chooses
to change their names.
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5 Exogenous and endogenous replacement rates

The empirical literature on industry dynamics Þnds that there is considerable heterogene-
ity among industries in terms of entry and exit rates. On the other hand, these rates are
sizeable even in industries that are neither growing nor shrinking. Typically, within an
industry the gross entry and exit rates are similar to each other, but at the same time
they are orders of magnitude larger than the net rates (Dunne et al., 1988). Our focus
is on a steady state, where the net exit rate is zero. Still, there is a constant renewal
(exit and entry), given by G (µE )Ðthe fraction of incumbents that leave the market, or
turnover ratio.

In our model there are two replacement processes: that of Þrms, and that of names. The
Þrst one, although empirically unobservable, a! ects the latter. Theorem 3 discusses how
the replacement rate" a! ects the entry-level reputation µE :

Theorem 3 (entry-level reputation and replacement). The entry-level reputation µE is
increasing in " , the exogenous replacement probability.

Proof. See Appendix E.

A higher level of " implies a decreased informativeness of histories, as the past becomes less
useful in predicting a ÞrmÕs current type. As a consequence, the reputation distributions
of competent and inept Þrms move closer to each other. By this mechanism, the fraction
of competent Þrms among those below the thresholdµE increases, so thatµE increases.
This is depicted in Figure 4.
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Figure 4: Distributions and consistent entry-level reputation for di ! erent values of"

Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are " = 0 .5
and # = 0 .025.
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As for the turnover ratio, it not only depends on µE but also on the population-wide
reputation distributionÐwhich shifts when " increases. Figure 5 shows that in our exam-
ple, when the replacement rate is small it has a large e! ect on µE but a negligible e! ect
on the turnover ratio G (µE ), and that the opposite occurs when the replacement rate is
large. Notice that a larger µE means that less information transpires to consumers, as a
higher fraction of histories are erased by the name-changing process. Hence, the exoge-
neous decrease in the informativeness of histories given by the higher" has the e! ect of
a further endogenous decrease through this channel.
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Figure 5: Entry-level reputation and turnover for di ! erent values of"

Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are " = 0 .5
and # = 0 .025.

6 Industry dynamics

Our model has a number of predictions, some of which have been investigated empirically.
Cabral and Hortacsu (2010), in a study of eBay auctions, Þnd that the probability that a
Þrm exits the market increases as its reputation declines (as deÞned by eBayÕs reputation
mechanism.) In turn, McDevitt (2011) studies the plumbing services market in Illinois
and Þnds that, all else being equal, the Þrms that are more likely to change names or exit
are those with worse track recordsÐa variable that resembles the history of public signals
in our model. Theorem 4 establishes that this is exactly what we should expect.

Regarding the cross section, the literature Þnds that younger Þrms are more likely to exit,
and charge lower prices, than older Þrms (Foster et al., 2008). In the same vein, McDevitt
(2011) Þnds that the exit probability is monotonically decreasing with age. Theorem 6
asserts that these Þndings are consistent with our model. It should be noted, though, that
in our model we track the age of names, not of Þrms. This is so because consumers do
not observe the birth-death process, and so they donÕt distinguish among those Þrms that
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have acted under the same name. Hence, Þrms are the appropriate empirical counterparts
of names in our model.

We start by looking at the cross-sectional variation in exit rates:

Theorem 4 (Name dynamics). For any active Þrm, the probability of exiting the market
in the next period is:

1. Higher for inept Þrms than for competent Þrms;

2. decreasing in the ÞrmÕs reputation (both conditional and unconditional on type);
and also

3. decreasing in the current signal (both conditional and unconditional on type).

Proof. In Appendix F.

The exit probability is the probability that the reputation falls below the threshold µE .
Part (1) of the theorem follows from the fact that competent ÞrmsÕ signals are stochasti-
cally larger than inept ÞrmsÕ; part (2) of the theorem follows from the fact that according
to BayesÕ rule, the posterior probability of an event is increasing in the prior; and Þ-
nally, part (3) of the theorem follows from the monotone likelihood assumption. These
results are consistent with the empirical Þndings reported in Cabral and Hortacsu (2010)
and McDevitt (2011), that relate exit probabilities with reputation and track records,
respectively.

We now turn to the cross-sectional di! erences in reputation distributions of names of
di! erent age in the steady state. This is to say, we compare across cohorts. Notice that
in the steady state, the group of agea looks exactly the same as the group of age 0 ina
periods in the future. In this sense, studying the cross-sectional variation (across cohorts)
is equivalent to studying the evolution over time of a given cohort.

Per Lemma 4, if no new competents were born among inactive Þrms ($ = 0 ), then there
would be no entry nor exiting, this is to say, no dynamics. In this case, it is not possible
to distinguish among cohorts, as all names are introduced at the same time. Age is
irrelevant, as it is completely detached from reputation. This contrasts with HšrnerÕs
model (Hšrner, 2002), where age and reputation are biunivocally related, as only Þrms
with perfect records survive.

On the other hand, as soon as there is a positive mass of competents born outside the
market ($ > 0), a ßow of entry/exit emerges.

Let a denote the age of a name that was introduceda periods ago in the market and
has been kept throughout (this, regardless of whether the Þrm that carries it has died
and been replaced in that lapsus or not). All such names conform the cohorta. Let G

$
a

denote the prior reputation distribution of the set of Þrms of cohort a and type ( , and m$
a

its mass; similarly, G$
a and m$

a denote the interim reputation distributions and its mass
after exit.

At any date, a new cohort of massG (µE ) enters. Out of them, a fraction µE , is competent:
mC

0 = µE G (µE ). As all new names carry the same reputationµE , we have:

GC
0 (x) = GI

0(x) =

&
0 if x < µ E

1 if x ( µE
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As time goes by, at each period two changes occur: (i) The birth-death process shifts the
masses of competent and inept Þrms within the cohort according to the transition matrix
1: )

mC
a+1

mI
a+1

*
=

)
1 ' " + "# "#
" (1 ' #) 1 ' "#

* )
mC

a
mI

a

*
(21)

and (ii) The mass of surviving names in each subpopulation( shrinks by a factor of#
1 ' G

$
a+1 (µE )

$
, as those Þrms that exit are not replaced by other Þrms from the same

cohort. Hence:
m$

a+1 = m$
a+1

#
1 ' G

$
a+1 (µE )

$
(22)

In turn, the evolution of the prior reputation distributions in a given cohort at di ! erent
ages is given by:

'
G

C
a+1 (x)

G
I
a+1 (x)

(

=

+

,
(1 ! ! + !% )m C

a
m C

a +1

!% m I
a

m C
a +1

! (1 ! %)m C
a

m I
a +1

(1 ! !% )m I
a

m I
a +1

-

.

' « ÷r (x,µ E )
0 GC

a (÷µ (x, r )) dFH« ÷r (x,µ E )
0 GI

a (÷µ (x, r )) dFL

(

(23)

The distributions of interim reputations relate to the priorsÕ as follows:

G$
a (x) =

&
0 if x < µ E
G!

a (x ) ! G!
a (µ E )

1! G!
a (µ E )

if x ( µE
(24)

Equation 23 is analogous to Equation 14. The only di! erence is in the weights. In the
population of active Þrms as a whole the total mass and the ratio of competent to inept
are constant over time. In contrast, not only each cohort is losing mass over time, but
also each type does so at di! erent rates. Similarly, Equation 24 resembles Equation 15;
they di! er in that within each cohort there is only exiting and no entrance.

Theorem 5 (Reputation across types by cohort). Within each cohort, the (prior, in-
terim) reputation of competent Þrms Þrst-order stochastically dominates the (prior, in-
terim) reputation of inept Þrms:

() a # N) ( ) x # ["# , 1 ' " + "# ]) , G
C
a (x) & G

I
a (x) and GC

a (x) & GI
a (x)

Proof. See Appendix G

Theorem 5 implies that conditional on age, inept Þrms are more likely to exit the mar-
ket than competent Þrms. As a consequence, the rate at wich the mass of competents
decreases is smaller than that of the inepts in Equation (22), asG

C
a+1 (µE ) < G

I
a+1 (µE ).

In turn, this implies that the reputation distribution for each cohort as a whole improves
over time as each cohort ages:

Theorem 6 (Reputation across cohorts). The (prior, interim) reputation of age- a + 1
Þrms Þrst-order stochastically dominates the (prior, interim) reputation of age-a Þrms
both, conditional and unconditional on types:

() a # N) ( ) x # ["# , 1 ' " + "# ]) , G
$
a+1 (x) & G

$
a (x) and Ga+1 (x) & Ga (x)

G$
a+1 (x) & G$

a (x) and Ga+1 (x) & Ga (x)

Proof. See Appendix H.
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This ÒcleansingÓ e! ect is an imperfect, stochastic version of what happens in Hšrner
(2002). Figure 6 illustrates this in our example: older Þrms (i.e., names) have stochas-
tically better reputations than younger ones, and yet not even the limit distributions
are degenerate. This result is consistent with the empirical Þndings in McDevitt (2011)
and Foster et al. (2008), where the exit probability is monotonically decreasing in age.
Moreover, since better-reputation Þrms charge higher prices, this result is also consistent
with the Þnding that older Þrms charge higher prices.
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µE
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Figure 6: Reputation distributions for di ! erent ages,Ga (x)

Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are ! =
0.1, " = 0 .5 and # = 0 .025. µE is 0.26.

Remark 2. Theorem 6 implies that the mean reputation is monotonically increasing in
age. The variance, however, is not. Figure 7 illustrates this in our example. As all
age-0 Þrms (i.e., entrants) have the same reputationµE , the variance starts at 0. As
time goes by and each Þrm gets a di! erent realization of the signal process, variance
increases. The cleansing e! ect that excludes from each cohort a disproportionate fraction
of inept Þrms, however, brings the reputation of the surviving Þrms closer together.
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Notes: r |H ! Be (r | 3, 2) and r |L ! Be (r | 2, 3). The parameters are ! =
0.1, " = 0 .5 and # = 0 .025. µE is 0.26.
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Appendices

A Computation of the reputation distributions

This section derives Equation (14), which gives the distributions of reputation for competent and inept
types, Pr

!
µt +1 # x | ' t +1

"
= G

#t +1
t +1 (x).

Stage t begins Market opens Birth/death
¥ ¥ ¥ ¥ ¥ ¥

Exit/entry Signal r t Stage t ends

Individual reputation: µt (prior) µt (interim)

Reputation distribution: Gt Gt

Figure 8: Time line for the date-t stage game

Let H µ t +1 ,µ t ,#t +1 ,#t ,r t denote the joint cdf of the random variables
!
µt +1 , µ t , r t , ' t , ' t +1

"
after the time- t

exit-entry process and before the time- t + 1 exit-entry process. At the beginning of this time interval,
the ÞrmsÕ types are' t and their reputation levels are µt ; after r t is observed and the birth-death process
occurs, ÞrmsÕ types are' t +1 and consumersÕ beliefs are updated toµt +1 . H is a mixed distribution:
while µt , µt +1 and r t are continuous random variables, ' t and ' t +1 are discrete. Moreover, µt has a
point mass at y. The marginal cdf of H over µt is denoted by Gt (µt ); notice that it is discontinuous at
y. The marginal cdf of H over r t conditional on ' t is denoted by F#t , and assumed to have a density.
Note that the distribution of r t only depends on the type ' t . Hence, the distributions of reputations and
signals relate to H as follows:

G
#
t +1 (x) $ H µ t +1 |#t +1

(x | ' ) Gt +1 (x) $ H µ t +1
(x)

G#
t (x) $ H µ t |#t (x | ' ) Gt (x) $ H µ t (x)

F# (r ) $ H r t |#t (r | ' )

On the other hand, the exogenous birth-death process among active Þrms at t is independent of any other
variable, and is fully described by the joint distribution in Table (2):

Before (' t )

C I Marginal

After C " (1 ! %+ %!) %! (1 ! " ) " ! &

(' t +1 ) I %"(1 ! ! ) (1 ! %!) (1 ! " ) 1 ! " + &

Marginal " 1 ! "

Table 2: Joint distribution of types among active Þrms at t
Note: Recall that %(" ! ! ) = &.

The marginal distribution over µt +1 (before time t + 1 exit-entry process), conditional on ' t +1 = ' ", is
the expectation of H µ t +1 |µ t ,r t ,#t ,#t +1

over µt , r t , and ' t .

G
# !

t +1 (x) = Pr
!
µt +1 # x | ' t +1 = ' ""

= H µ t +1 |#t +1

!
x | ' ""

= E#t |#t +1

#
Er t |#t ,#t +1

#
Eµ t | r t ,#t ,#t +1

#
H µ t +1 |µ t ,r t ,#t ,#t +1

!
x | µ, r, ' , ' ""

$$$
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Notice that there is a functional relation between µt +1 and (µt , r t ), as established by Equation (11):

µt +1 = $ (µt , r t )

This implies that µt +1 and (' t , ' t +1 ) are conditionally independent given (µt , r t ). Hence, H µ t +1 |µ t ,r t ,#t ,#t +1
(x | µ, r, ' , ' ") =

H µ t +1 |µ t ,r t (x | µ, r ). Moreover, given (µt , r t ), µt +1 becomes determinate, so that:

H µ t +1 |µ t ,r t (x | µ, r ) = 1{ $ ( µ,r ) # x }

Thus, we can write:

G
# !

t +1 (x) = E#t |#t +1

#
Er t |#t ,#t +1

#
Eµ t | r t ,#t ,#t +1

%
1{ $ ( µ,r ) # x }

!
x | µ, r, ' , ' ""&

$$

There are di ! erent ways in which we can compute this expectation, depending on the order of integration
we choose. If we start with the expectation over the current type, we get:

G
# !

t +1 (x) =
'

#t

Pr
!
' t | ' t +1 = ' "" Er t |#t ,#t +1

#
Eµ t | r t ,#t ,#t +1

%
1{ $ ( µ,r ) # x }

!
x | µ, r, ' , ' ""&

$

Recall from Equations (13) and (12) that we write:

µ = ÷µ (x, r ) and r = ÷r (x, µ )

for the implicit functions for µ and r from x = $ (µ, r ). Hence:

Eµ t | r t ,#t ,#t +1

%
1{ $ ( µ,r ) # x }

!
x | µ, r, ' , ' ""& = Eµ t | r t ,#t ,#t +1

%
1{ µ # ÷µ ( x,r ) }

!
x | µ, r, ' , ' ""& = G#

t (÷µ (x, r ))

so that we get:

G
# !

t +1 (x) = Pr
!
' t = C | ' t +1 = ' "" Er t |#t ,#t +1

#
GC

t (÷µ (x, r )) | r, C, ' "
$

+ Pr
!
' t = I | ' t +1 = ' "" Er t |#t ,#t +1

#
GI

t (÷µ (x, r )) | r, I, ' "
$

On the other hand, the expectation Er t |#t ,#t +1
[G#

t (÷µ (x, r )) | r, ' , ' "] must be computed bearing in mind

that r induces a discontinuous distribution over GC
t (÷µ (x, r t )) , with point mass at y. Thus, we split it

into the two events separated by the point of discontinuity:

Er t |#t ,#t +1

#
GC

t (÷µ (x, r t )) | r, C, ' "
$

= Pr
!
r t > ÷r (x, y ) | r, C, ' "" E r t |#t ,#t +1

#
GC

t (÷µ (x, r t )) | r t > ÷r (x, y ) , C, ' "
$

+ Pr
!
r t # ÷r (x, y ) | r, C, ' "" E r t |#t ,#t +1

#
GC

t (÷µ (x, r t )) | r t # ÷r (x, y ) , C, ' "
$

where Er t |#t ,#t +1

%
GC

t (÷µ (x, r t )) | r t > ÷r (x, y ) , C, ' "
&

= 0 , so that:

Er t |#t ,#t +1

#
GC

t (÷µ (x, r t )) | r t , C, ' "
$

=
ö ÷r ( x,y )

0
GC

t (÷µ (x, r t )) dFH

Similarly,

Er t |#t ,#t +1

#
GI

t (÷µ (x, r t )) | r t , I, ' "
$

=
ö ÷r ( x,y )

0
GI

t (÷µ (x, r t )) dFL

Plugging into the equation for G
C
t +1 (x), we get:

G
C
t +1 (x) =

" (1 ! %+ %!)

" ! &

ö ÷r ( x,y )

0
GC

t (÷µ (x, r t )) dFH +
%"(1 ! ! )

" ! &

ö ÷r ( x,y )

0
GI

t (÷µ (x, r t )) dFL (25)

An analogous equation is obtained for GI
t +1 (x) :

G
I
t +1 (x) =

%"(1 ! ! )

1 ! " + &

ö ÷r ( x,y )

0
GC

t (÷µ (x, r t )) dFH +
(1 ! " ) (1 ! %!)

1 ! " + &

ö ÷r ( x,y )

0
GI

t (÷µ (x, r t )) dFL (26)

B Proof of Lemma 3

To lighten notation we supress the reference to y as an argument of T and the distributions.
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We start by establishing that the operator T deÞned by Equation ( ??) is a contraction mapping in the

set of pairs of continuous, normalized 10 functions (G
C

, G
I
) endowed with the following metric:

(
((

G
C

, G
I
)

,
(

G
"C

, G
"I

))
= max

*
( $

(
G

C
, G

"C
)

, ( $

(
G

I
, G

"I
)+

,

where:
(

(
G

#
, G

"#
)

= sup
x %["% ,1& " + "% ]

,
,
,G

#
(x) ! G

"#
(x)

,
,
,

for ' % {C, I } . The supremum is taken over x % [%!, 1 ! %+ %!] since the supports of G and G
"

are
always contained in this interval.

Recall that the operator T transforms the pair
(

G
C
t , G

I
t

)
into a pair

(
G

C
t +1 , G

I
t +1

)
according to:

-
G

C
t +1 (x)

G
I
t +1 (x)

.

=

/

0
(1 ! %+ %!)

&& ! & ! "%
&& ! &

" (1 & %)
1& &+ ! & ! (1 & "% )

1& &+ ! &

1

2
3

FH (÷r (x, y ))
FL (÷r (x, y ))

4

+

-
(1 ! %+ %!) "% (1 & &+ ! )

&& !
" (1 & %)( && ! )

1& &+ ! (1 ! %!)

. - « ÷r ( x,y )
0 G

C
t (÷µ (x, r )) dFH« ÷r ( x,y )

0 G
I
t (÷µ (x, r )) dFL

.

(27)

and where y %[0, 1] is treated as a constant.

First notice that there are no Þrms with reputation either below y or above 1 ! %+ %! after entry-exit
decisions are made; therefore, we have:

G
#
t (µ) = G

"#
t (µ) = 0 if µ < y and

G
#
t (µ) = G

"#
t (µ) = 1 if µ > 1 ! %+ %!

for any distribution of reputations. Moreover, the deÞnitions of ÷r (x, µ ) and ÷µ (x, r ) imply that:

1. ÷µ (x, ÷r (x, y )) = y. This is to say, the previous reputation of a Þrm who obtained a signal ÷r (x, y )
that changed its reputation from y to x was y;

2. ÷µ (x, r ) < y & r > ÷r (x, y ): Those Þrms who have a reputation x today and had a reputation lower
than y the previous period are those who obtained signals of at least ÷r (x, y ); and

3. ÷µ (x, r ) > 1 ! %+ %! & r < ÷r (x, 1 ! %+ %!) : Those Þrms who had a higher reputation than
1 ! %+ %! the previous period and have a reputation x today are those whose signals were lower
than ÷r (x, 1 ! %+ %!).

Hence,

G
#
t (÷µ (x, r t )) = G

"#
t (÷µ (x, r t )) = 0 if r > ÷r (x, y ) and

G
#
t (÷µ (x, r t )) = G

"#
t (÷µ (x, r t )) = 1 if r < ÷r (x, 1 ! %+ %!) .

Therefore, the distance between G
C
t +1 and G

"C
t +1 :

( $

(
G

C
t +1 , G

"C
t +1

)
= sup

x

,
,
,G

C
t +1 (x) ! G

"C
t +1 (x)

,
,
,

can be rewritten as:

( $

(
G

C
t +1 , G

"C
t +1

)
= sup

x

,
,
,
,
,
(1 ! %+ %!)

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

(
G

C
t (÷µ (x, r t )) ! G

"C
t (÷µ (x, r t ))

)
dFH

+ %!
(1 ! " + &)

" ! &

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

(
G

I
t (÷µ (x, r t )) ! G

"I
t (÷µ (x, r t ))

)
dFL

,
,
,
,
,
.

Using the properties of the sup and |·| operators, we obtain:

( $

(
G

C
t +1 , G

"C
t +1

)
# (1 ! %+ %!) sup

x

,
,
,
,
,

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

(
G

C
t (÷µ (x, r t )) ! G

"C
t (÷µ (x, r t ))

)
dFH

,
,
,
,
,

+ %!
1 ! " + &

" ! &
sup

x

,
,
,
,
,

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

(
G

I
t (÷µ (x, r t )) ! G

"I
t (÷µ (x, r t ))

)
dFL

,
,
,
,
,

10 The function G
#

is normalized if G
#

(%!) = 0 and G
#

(1 ! %+ %!) = 1 .
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Moving the absolute value inside the integrals:

( $

(
G

C
t +1 , G

"C
t +1

)
# (1 ! %+ %!) sup

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

,
,
,G

C
t (÷µ (x, r t )) ! G

"C
t (÷µ (x, r t ))

,
,
, dFH

+ %!
1 ! " + &

" ! &
sup

x

ö ÷r ( x,y )

÷r ( x, 1& " + "% )

,
,
,G

I
t (÷µ (x, r t )) ! G

"I
t (÷µ (x, r t ))

,
,
, dFL

By the deÞnition of ( $ (G#
t , H #

t ), we also know that:

( $

(
G

C
t +1 , G

"C
t +1

)
# (1 ! %+ %!) sup

x

ö ÷r ( x,y )

÷r ( x, 1& " + "% )
( $

(
G

C
t , G

"C
t

)
dFH

+ %!
1 ! " + &

" ! &
sup

x

ö ÷r ( x,y )

÷r ( x, 1& " + "% )
( $

(
G

I
t , G

"I
t

)
dFL

Taking the distances outside the integrals, we get:

= (1 ! %+ %!) ( $

(
G

C
t , G

"C
t

)
sup

x

ö ÷r ( x,y )

÷r ( x, 1& " + "% )
dFH

+ %!
1 ! " + &

" ! &
( $

(
G

I
t , G

"I
t

)
sup

x

ö ÷r ( x,y )

÷r ( x, 1& " + "% )
dFL

But
« ÷r ( x,y )

÷r ( x, 1& " + "% ) dF = F (÷r (x, y )) ! F (÷r (x, 1 ! %+ %!)) < 1 for all x %[%!, 1 ! %+ %!]. Let us deÞne
) as follows:

) = max

5

sup
x %["% ,1& " + "% ]

(FH (÷r (x, y )) ! FH (÷r (x, 1 ! %+ %!))) ,

sup
x %["% ,1& " + "% ]

(FL (÷r (x, y )) ! FL (÷r (x, 1 ! %+ %!)))

6

.

Observe that ) %(0, 1). Then:

( $

(
G

C
t +1 , G

"C
t +1

)
# ) (1 ! %+ %!) ( $

(
G

C
t , G

"C
t

)

+ )%!
1 ! " + &

" ! &
( $

(
G

I
t , G

"I
t

)

# )(
((

G
C
t , G

I
t

)
,
(

G
"C
t , G

"I
t

))

This is so because the sum of the coe" cients is smaller than 1. Following a similar procedure, it can be
shown that the distance between G

I
t +1 and G

"I
t +1 satisÞes:

( $

(
G

I
t +1 , G

"I
t +1

)
# )(

((
G

C
t , G

I
t

)
,
(

G
"C
t , G

"I
t

))
.

We thus conclude that:

(
((

G
C
t +1 , G

"C
t +1

)
,
(

G
I
t +1 , G

"I
t +1

))
# )(

((
G

C
t , G

I
t

)
,
(

G
"C
t , G

"I
t

))
,

i.e., T is a contraction mapping.

On the other hand, the set of continuous, bounded real functions endowed with the sup norm is complete.
Moreover, the subset of normalized functions is closed, 11 thereby complete. Hence, by BanachÕs Fixed
Point Theorem T has a unique Þxed point, which is a pair of continuous and normalized functions. !

Remark 3. If we had used %! instead of y as the lower bound of reputations in the proof, we would have
obtained a higher modulus ) Ðbut we would still be able to prove that T is a contraction mappingÐ.

Remark 4. y not only a ! ects the modulus of the contraction, but also the limiting distribution.

Remark 5. If y is consistent, G
C

(x) and G
I

(x) are increasing functions because GC (x) and GI (x)

are non-negative in the whole domain, while ÷r (x, y ) is increasing in x. Thus, G
C

and G
I

are not only
normalized and continuous, but also increasingÐi.e., distribution functions.

Thus, the proof of the existence of a steady-state distribution of reputations is not a ! ected by the
endogenous entry-exit process as long as y is Þxed, but the shape of the steady-state distribution is.
The absolute continuity of FH an FL implies that G

C
and G

I
are absolutely continuous, with common

support [%!, 1 ! %+ %!].

11 See Lemma 1 in Vial, 2010 for a proof.
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C Proof of Proposition 1

DeÞne the function * (µ) $ # (µ, µ ), with µ > %!, as:

# (x, y ) =
(" ! &) G

C
(x, y ) + &

(" ! &) G
C

(x, y ) + (1 ! " + &) G
I

(x, y )
.

with x = y = µ, i.e., Equation (17) evaluated at the diagonal. We need to prove that * (µ) has a unique
Þxed point. We begin by observing that:

Lemma 5. * has at least one Þxed point.

Proof. The function f (x) $ G
I

(x, x ) is continuous, with f (%!) = 0 and f (1 ! %+ %!) = 1 . Hence,
by the intermediate value theorem there is at least one + % (%!, 1 ! %+ %!) such that f (+) = !

1& &+ ! ,
and so * (+) = 1 . We also know that * is continuous in its domain, and that * (+) ! + = 1 ! + > 0 and
* (1 ! %+ %!) ! (1 ! %+ %!) = " ! (1 ! %+ %!) < 0 (this follows from the assumption that %< 1 ! " ).
By the intermediate value theorem, then, there is at least one µ %(+, 1 ! %+ %!) such that * (µ) ! µ = 0 .
Hence, there is at least one µE %(%!, 1 ! %+ %!) such that # (µE , µE ) = µE .

The next step is to establish uniqueness.

Lemma 6. * " (µE ) = 0 if µE is a Þxed point. Hence, the Þxed point is unique.

Proof. Indeed,

* " (µE ) dµE =
,#

, x
dx +

,#

, y
dy

evaluated at x = y = µE and dx = dy = dµE .

The Þrst term corresponds to:

,#

, x
(x, y ) =

-
(" ! &) gC (x, y ) + (1 ! " + &) gI (x, y )

(" ! &) G
C

(x, y ) + (1 ! " + &) G
I

(x, y )

. 3
(" ! &) gC (x, y )

(" ! &) gC (x, y ) + (1 ! " + &) gI (x, y )
! # (x, y )

4

However, consitency requires that agC ( x,y )
agC ( x,y )+(1 & a) gI ( x,y )

= x, namely, the fraction of competent among

those Þrms with reputation x is exactly x. Moreover, at a Þxed point # (x, y ) = x. Hence, '(
' x = 0 at

x = y = µE . In words, the entrantsÕ reputation # (x, y ) increases when the exit reputation level increases
if and only if the Þrms that leave and reenter after this change have a higher reputation than those that
are already replacing their names. At the Þxed point, however, those Þrms have exactly the same mean
reputation, so moving the cutu ! point will have no e ! ect on the entrantsÕ reputation.

In turn, the second term corresponds to

,#

, y
(x, y ) =

,# (x, y )

, G
C

, G
C

, y
(x, y ) +

,# (x, y )

, G
I

, G
I

, y
(x, y ) ,

=
1

G (x, y )

-

a (1 ! # (x, y ))
, G

C

, y
(x, y ) ! (1 ! a) # (x, y )

, G
I

, y
(x, y )

.

(28)

and # (x, y ) = x if x = y = µE is a Þxed point.

After a change of variables, the operator T in Equation 16 can be rewritten as:

T

-
G

C
t

G
I
t

.

(x, y ) = &

/

0
(1 ! %+ %!)

&& ! ! "%
&& !

" (1 & %)
1& &+ ! ! (1 & "% )

1& &+ !

1

2
3

FH (÷r (x, y ))
FL (÷r (x, y ))

4

!

-
(1 ! %+ %!) "% (1 & &+ ! )

&& !
" (1 & %)( && ! )

1& &+ ! (1 ! %!)

. - « ÷µ ( x, 0)
y G

C
t (µ, y ) f H (÷r (x, µ )) ' ÷r ( x,µ )

' µ dµ
« ÷µ ( x, 0)

y G
I
t (µ, y ) f L (÷r (x, µ )) ' ÷r ( x,µ )

' µ dµ

.

$
3

T C (x, y )
T I (x, y )

4
(29)

29



For a given y, the (unique pair of) steady-state distriutions G
C

and G
I

satisfy

-
G

C

G
I

.

(x, y ) =

T

-
G

C

G
I

.

(x, y ). In particular, let us consider as the initial steady-state distributions those obtained

for y = µE (i.e., for a consistent entry-level reputation). Changing y a! ect G
C

and G
I

in two ways: (i)
as y a! ects the operator itself, it also a ! ects its Þxed point (direct e ! ect); and (ii) as the distributions
also a! ect the operator, they also a ! ect its Þxed point (indirect e ! ect):
/

0
' G C

' y
' G I

' y

1

2 (x, y ) =

/

0
' T C

' y

,
,
,
G

' T I

' y

,
,
,
G

1

2 (x, y )

+

/

0
« ÷µ ( x, 0)

y
' G C

' y (µ, y ) f H (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ +

« ÷µ ( x, 0)
y

' G I

' y (µ, y ) f L (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ

« ÷µ ( x, 0)
y

' G C

' y (µ, y ) f H (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ +

« ÷µ ( x, 0)
y

' G I

' y (µ, y ) f L (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ

1

2

(30)

The direct e ! ect is obtained from direct computation of the derivatives on Equation 29 (when evaluated
at the steady-state distributions obtained for y = µE ):

/

0
' T C

' y

,
,
,
G

' T I

' y

,
,
,
G

1

2 (x, y ) =
, 7r (x, y )

, y

- &(1 & " + "% )
&& !

"% (1 & &)
&& !

&" (1 & %)
1& &+ !

(1 & "% )(1 & &)
1& &+ !

. 3
GC (y, y) f H (÷r (x, y ))
GI (y, y) f L (÷r (x, y ))

4
(31)

Equation 30 deÞnes an integral equations system for ' G C

' y and ' G C

' y . However, instead or looking for
a solution of this integral equations system, we can iterate the operator T to show that 28 equals zero
when evaluated at a Þxed point: since the steady-state distributions are the Þxed point of a contraction
mapping in a complete metric space, they can be obtained as the limit of the sequence deÞned by
repeatedly iterating T starting from any feasible pair G

C
0 and G

I
0 .

Let denote the t-th iteration of T as G
C
t and G

I
t , and deÞne # t (x, y ) as

&G C
t (x,y ! )

G t ( x,y ! )
. If we start iterating

T from the initial steady-state distributions (obtained with y = µE ), then y = # 0 (y, y) = &G C
0 ( y,y )

G 0 ( y,y )
.

Notice that iterating T with the same y gives a constant sequence, since G
C
0 and G

I
0 are already Þxed

points of T for y = µE . But after iterating T with a di ! erent level of y we obtain G
#
1 '= G

#
0 ; moreover,

for an inÞnitesimally small change in y, the di ! erence between them is exactly ' T !

' y dy. Hence, we can

deÞne G
#
1 as:

G
#
1

!
x, y "" = G

#
0 (x, y ) +

, T #

, y

,
,
,
,
G 0

(x, y ) dy

When evaluating Equation 31 in GC
0 y GI

0 , and taking into account that y = &G C
0 ( y,y )

G 0 ( y,y )
, we obtain:

/

8
0

' T C

' y

,
,
,
G 0

' T I

' y

,
,
,
G 0

1

9
2 (x, y ) = G0 (y, y)

, 7r (x, y )

, y

-
1

&& ! ((1 ! %+ %!) yf H (÷r (x, y )) + %! (1 ! y) f L (÷r (x, y )))
1

1& &+ ! (%(1 ! ! ) yf H (÷r (x, y )) + (1 ! %!) (1 ! y) f L (÷r (x, y )))

.

(32)

Moreover, from Equations 8 and 12we obtain:

(1 ! %+ %!) yf H (÷r (x, y )) + ( %!) (1 ! y) f L (÷r (x, y )) = x (yf H (÷r (x, y )) + (1 ! y) f L (÷r (x, y ))) (33)

Hence, the direct e ! ect can be rewritten as:
/

8
0

' T C

' y

,
,
,
G 0

' T I

' y

,
,
,
G 0

1

9
2 (x, y ) = G0 (y, y)

, 7r (x, y )

, y
(yf H (÷r (x, y )) + (1 ! y) f L (÷r (x, y )))

-
x

&& !
1& x

1& &+ !

.

and the pair
(

G
C
1 , G

I
1

)
can be deÞned as:

-
G

C
1

G
I
1

.
!
x, y "" =

-
G

C
0

G
I
0

.

(x, y ) + G0 (y, y) - 0
!
x, y ""

-
x

&& !
1& x

1& &+ !

.

(34)
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with - 0 (x, y ") $ ' !r ( x,y )
' y (yf H (÷r (x, y )) + (1 ! y) f L (÷r (x, y ))) dy, while # 1 can be obtained as:

# 1
!
x, y "" =

(" ! &) G
C
0 (x, y ) + xG0 (y, y) - 0 (x, y ) + &

G0 (x, y ) + G0 (y, y) - 0 (x, y )

After evaluating at x = y and rearranging, we obtain:

# 1
!
y, y"" =

# 0 (y, y) (1 + - 0 (x, y ) dy)

1 + - 0 (x, y ) dy
= # 0 (y, y)

Repeatedly iterating the operator T we obtain a sequence of distributions deÞned as:
-

G
C
t

G
I
t

.
!
x, y "" =

-
G

C
t & 1

G
I
t & 1

.
!
x, y "" + G0 (y, y) - t & 1

!
x, y ""

-
x

&& !
1& x

1& &+ !

.

(35)

where - t (x, y ") $ !
« ÷µ ( x, 0)

y ! - t & 1 (µ, y ") ( µf H (÷r (x, µ )) + (1 ! µ) f L (÷r (x, µ ))) ' ÷r ( x,µ )
' µ dµ for all t > 0.

Hence, we conclude that # t (y, y") = # 0 (y, y) for all t > 0, and hence '(
' y (y, y) = 0 when y = µE .

Finally, we conclude that µE < " :

Lemma 7. The consistent entry-level reputation is lower than the fraction of competents among active
Þrms after the exit-entry process takes place: µE < " .

Proof. Notice that # (µE , µE ) = µE and # (1 ! %+ %!, µE ) = " . Moreover,

,#

, x
(x, µ E ) =

3
(" ! &) gC (x, µ E ) + (1 ! " + &) gI (x, µ E )

G (x, µ E )

4
(x ! # (x, µ E )) ,

is strictly positive in the interval (µE , 1 ! %+ %!). Hence, µE < " .

D Proof of Theorem 2

Lemma 8. For all x %(%!, 1 ! %+ %!), G
C

(x, µ E ) < G
I

(x, µ E ).

Proof. Notice Þrst that µE < " implies that ( && ! ) G C ( µ E ,µ E )
G ( µ E ,µ E )

< " ! !
G ( µ E ,µ E )

< " ! &. But ( && ! ) G C ( µ E ,µ E )
G ( µ E ,µ E )

<

" ! & if and only if G
C

(µE , µE ) < G
I

(µE , µE ).

Consistency also requires that for all x % (%!, 1 ! %+ %!), ( && ! ) gC ( x,µ E )
g( x,µ E ) = x. Hence, gC (x, µ E ) =

x
&& ! g (x, µ E ) and gI (x, µ E ) = 1& x

1& &+ ! g (x, µ E ). Therefore, G
I

(x, µ E ) ! G
C

(x, µ E ) > 0 at x = µE , and
this di ! erence attains its maximum at x = " ! &:

,
(

G
I

(x, µ E ) ! G
C

(x, µ E )
)

, x
= gI (x, µ E ) ! gC (x, µ E ) =

3
" ! & ! x

(" ! &) (1 ! " + &)

4
g (x, µ E )

Notice that
'

"
G I ( x,µ E ) & G C ( x,µ E )

#

' x < 0 for all x > " ! &, and since G
I

(x, µ E ) ! G
C

(x, µ E ) = 0 at

x = 1 ! %+ %!, we conclude that G
I

(x, µ E ) > G
C

(x, µ E ) for all x %(%!, 1 ! %+ %!).

Lemma 9. For all x %(µE , 1 ! %+ %!), GC (x, µ E ) < G I (x, µ E ).

Proof. As µE < " , we know that GC (µE , µE ) < G I (µE , µE ), since &G C ( µ E ,µ E )
G ( µ E ,µ E ) < " if and only if

GC (µE , µE ) < G I (µE , µE ).

Consistency also requires that for all x % (µE , 1 ! %+ %!), &gC ( x,µ E )
g( x,µ E ) = x. Hence, GI (x, µ E ) !

GC (x, µ E ) > 0 at x = µE , and this di ! erence attains its highest value at x = " :

,
!
GI (x, µ E ) ! GC (x, µ E )

"

, x
= gI (x, µ E ) ! gC (x, µ E ) =

" ! x

" (1 ! " )
g (x, µ E )

Notice that
' (G I ( x,µ E ) & G C ( x,µ E ) )

' x < 0 for all x > " , and since GI (x, µ E ) ! GC (x, µ E ) = 0 at x =
1 ! %+ %!, we conclude that GI (x, µ E ) > G C (x, µ E ) for all x %(µE , 1 ! %+ %!).
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E Proof of Theorem 3

Consider the function * (µ) $ # (µ, µ ), with µ > %! as deÞned in Appendix C; i.e., Equation 17 evaluated
at the diagonal, with:

# (x, y ) =
(" ! &) G

C
(x, y ) + &

(" ! &) G
C

(x, y ) + (1 ! " + &) G
I

(x, y )
.

We know that µE = * (µE ). Totally di ! erentiating this expression, we get:

dµE =
(" ! &) (1 ! # )

G (µE , µE )

, G
C

(µE , µE )

,%
d%!

# (1 ! " + &)

G (µE , µE )

, G
I

(µE , µE )

,%
d%+ * " (µE ) dµE

and therefore:

dµE

d%
=

( && ! )(1 & ( )
G

' G C

'" ! ( (1 & &+ ! )
G

' G I

'"

1 ! * " (µE )
(36)

The factor 1
1& ) ! ( µ E ) emphasizes that as %has a direct e! ect on G

C
and G

I
, it must a ! ect the entry-level

reputation, which in turn a ! ects the reputation distributions GC and GI and hence # . But as we proved
before, * " (µE ) = 0 and therefore the indirect e ! ect vanishes. Hence, we must restrict attention to the
direct e ! ect.

As in Appendix C, ' G C

'" and ' G I

'" are the solution of an integral-equation system deÞned as:

-
' G C

'"
' G I

'"

.

(x, y ) =

/

0
' T C

'"

,
,
,
G

' T I

'"

,
,
,
G

1

2 (x, y )

+

/

0
« ÷µ ( x, 0)

y
' G C

'" (µ, y ) f H (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ +

« ÷µ ( x, 0)
y

' G I

'" (µ, y ) f L (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ

« ÷µ ( x, 0)
y

' G C

'" (µ, y ) f H (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ +

« ÷µ ( x, 0)
y

' G I

'" (µ, y ) f L (÷r (x, µ )) ' ÷r ( x,µ )
' µ dµ

1

2

(37)

We know that:

• ! = "& & !
" (by deÞnition);

• ' ÷r ( x,y )
' x = R

R !
1& "

( x & "% )(1 & " + "% & x ) , while ' ÷r ( x,y )
'" = ! && ! & x

1& "
' ÷r ( x,y )

' x

• ' ÷µ ( x,r )
' x = (1 & R ( r ))÷µ ( x,r ) & 1

(( x & 1+ " & "% ) R ( r ) & ( x & "% )) , while ' ÷µ ( x,r )
'" = ! && ! & x

1& "
' ÷µ ( x,r )

' x

• gC
t +1 y gI

t +1 can be obtained by taking the derivative of G
C
t +1 y G

I
t +1 with respect to x:

gC
t +1 (x, y ) =

, ÷r (x, y )

, x

3
" (1 ! %+ %!)

" ! &
GC

t (y, y) f H (÷r (x, y )) +
(1 ! " ) %!

" ! &
GI

t (y, y) f L (÷r (x, y ))
4

+
" (1 ! %+ %!)

" ! &

ö ÷r ( x,y )

0
gC

t (÷µ (x, r ) , y)
, ÷µ (x, r )

, x
dFH +

(1 ! " ) %!

" ! &

ö ÷r ( x,y )

0
gI

t (÷µ (x, r ) , y)
, ÷µ (x, r )

, x
dFL

and

gI
t +1 (x, y ) =

, ÷r (x, y )

, x

3
"%(1 ! ! )

1 ! " + &
GC

t (y, y) f H (÷r (x, y )) +
(1 ! " ) (1 ! %!)

1 ! " + &
GI

t (y, y) f L (÷r (x, y ))
4

+
"%(1 ! ! )

1 ! " + &

ö ÷r ( x,y )

0
gC

t (÷µ (x, r ) , y)
, ÷µ (x, r )

, x
dFH +

(1 ! " ) (1 ! %!)

1 ! " + &

ö ÷r ( x,y )

0
gI

t (÷µ (x, r ) , y)
, ÷µ (x, r )

, x
dFL

Hence, the direct e ! ect of a change in %can be written as:
/

0
' T C

'"

,
,
,
G

' T I

'"

,
,
,
G

1

2 (x, y ) = !

- ö ÷r ( x,y )

0
GI (÷µ (x, r ) , y) dFL !

ö ÷r ( x,y )

0
GC (÷µ (x, r ) , y) dFH

.
/

8
0

'
"

" (1 " # + #$ )
" " %

#

'"
'

"
"# (1 " $ )
1" " + %

#

'"

1

9
2

!
" ! & ! x

1 ! %

3
gC (x, y )

gI (x)

4
(38)
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where
'

"
" (1 " # + #$ )

" " %

#

'" = ! &(1 & &)
&& ! and

'
"

"# (1 " $ )
1" " + %

#

'" = &(1 & &)
1& &+ ! . But we also know that steady-state distri-

butions satisfy:

G
I

(x, y ) ! G
C

(x, y ) =
" (1 ! " ) (1 ! %)

(" ! &) (1 ! " + &)

- ö ÷r ( x,y )

0
GI (÷µ (x, r ) , y) dFL !

ö ÷r ( x,y )

0
GC (÷µ (x, r ) , y) dFH

.

and that consistency requires that ( && ! ) gC ( x,y )
g( x,y ) = x. Thus, the direct e ! ect can be rewritten as:

/

0
' T C

'"

,
,
,
G

' T I

'"

,
,
,
G

1

2 (x, y ) = !
(" ! &) (1 ! " + &)

1 ! %

(
G

I
(x, y ) ! G

C
(x, y )

)
-

! 1
&& !
1

1& &+ !

.

!
" ! & ! x

1 ! %
g (x, y )

-
x

&& !
1& x

1& &+ !

.

(39)

Also as in Appendix C we repeatedly iterate the operator T to Þnd the sign of 36 starting from G
C
0 y G

I
0

Ðthe steady-state distributions obtained with y = µE and the initial value of %.

Let denote the t-th iteration of T as G
C
t and G

I
t , and deÞne # t (x, y ) as &G C

t ( x,y )
G t ( x,y )

. Then y = # 0 (y, y) =

&G C
0 ( y,y )

G 0 ( y,y )
. After iterating T with a di ! erent level of %we obtain G

#
1 '= G

#
0 ; moreover, for an inÞnitesimally

small change in %, the di ! erence between them is exactly ' T !

'" d%. Hence, we can deÞneG
#
1 as:

G
#
1 (x, y ) = G

#
0 (x, y ) +

, T #

,%

,
,
,
,
G 0

(x, y ) d%

It follows that:
-

G
C
1

G
I
1

.

(x, y ) =

-
G

C
0

G
I
0

.

(x, y ) + . 0 (x, y )

-
1

&& !
! 1

1& &+ !

.

+ ) 0 (x, y )

-
x

&& !
1& x

1& &+ !

.

where . 0 (x, y ) $ ( && ! )(1 & &+ ! )
1& "

(
G

I
0 (x, y ) ! G

C
0 (x, y )

)
d%> 0 and ) 0 (x, y ) $ ! && ! & x

1& " g0 (x, y ) d%< 0.

When we evaluate this expression in the new value of %we obtain:

G1 (x, y ) = G0 (x, y ) + ) 0 (x, y )

and hence:

# 1 (y, y) =
(" ! &) G

C
0 (y, y) + . 0 (y, y) + y) 0 (y, y) + &

G1 (y, y)

where ( && ! ) G C
0 ( y,y )+ !

G 0 ( y,y )
= # 0 (y, y) = y. Rearranging, we obtain:

# 1 (y, y) = # 0 (y, y) +
. 0 (x, y )

G1 (x, y )

Iterating the operator T (considering the new value of %) we obtain:
-

G
C
t

G
I
t

.

(x, y ) =

-
G

C
t & 1

G
I
t & 1

.

(x, y ) + . t & 1 (x, y )

-
1

&& !
! 1

1& &+ !

.

+ ) t & 1 (x, y )

-
x

&& !
1& x

1& &+ !

.

with:
Gt (x, y ) = Gt & 1 (x, y ) + ) t & 1 (x, y )

where

. t (x, y ) $ !
ö ÷µ ( x, 0)

y
. t & 1 (µ, y ) ((1 ! %+ %! ! x) f H (÷r (x, µ )) + ( x ! %!) f L (÷r (x, µ )))

, ÷r (x, µ )

, µ
dµ > 0

and

) t (x, y ) $
ö ÷µ ( x, 0)

y
(. t & 1 (µ, y ) ( f L (÷r (x, µ )) ! f H (÷r (x, µ ))) ! ) t & 1 (µ, y ) ( µf H (÷r (x, µ )) + (1 ! µ) f L (÷r (x, µ ))))

, ÷r (x, µ )

, µ
dµ

for all t > 0. Thus, we conclude that for all the elements of the sequence, # t (y, y) can be written as:

# t (y, y) =
# t & 1 (y, y) Gt & 1 (y, y) + . t & 1 (y, y) + y) t & 1 (y, y)

Gt & 1 (y, y) + ) t & 1 (y, y)
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Moreover:
-

G
C
t

G
I
t

.

(x, y ) =

-
G

C
0

G
I
0

.

(x, y ) +
t & 1'

j =0

. j (x, y )

-
1

&& !
! 1

1& &+ !

.

+
t & 1'

j =0

) j (x, y )

-
x

&& !
1& x

1& &+ !

.

with:

Gt (x, y ) = G0 (x, y ) +
t & 1'

j =0

) j (x, y )

Since # 0 (y, y) = y, we Þnally obtain:

# t (y, y) = # 0 (y, y) +

: t & 1
j =0 . j (y, y)

Gt (y, y)
> # 0 (y, y)

and hence we conclude that for all t > 0, # t (y, y) > # 0 (y, y), and therefore dµ E
d" > 0.

F Proof of Lemma 4

Observe that Pr ( exit at t + 1 |µt , ' t ) = F#t (÷r (µE , µt )) . The Þrst-order stochastic dominance assumption
implies directly that Pr ( exit at t+1 |µt , C) = FH (÷r (µE , µt )) # FL (÷r (µE , µt )) = Pr ( exit at t + 1 |µt , I ).
On the other hand, we have:

, Pr ( exit at t + 1 |µt , ' t )

, µt
= f #t (÷r (µE , µt ))

, ÷r (µE , µt )

, µt
< 0

since ' ÷r ( µ E ,µ t )
' µ t

< 0. Also, we have that Pr ( exit at t + 1 |µt ) = µt FH (÷r (µE , µt ))+(1 ! µt ) FL (÷r (µE , µt )) .
As a consequence,

, Pr ( exit at t + 1 |µt )

, µt
= ( FH ! FL ) + ( µt f H + (1 ! µt ) f L )

, ÷r (µE , µt )

, µt
< 0

Regarding signals, we have that Pr ( exit at t + 1 |r t , ' t ) = G#t (÷µ (µE , r t )) . Hence,

, Pr ( exit at t + 1 |r t , ' t )

, r t
=

, G#t

, ÷µ

, ÷µ (µE , r t )

, r t
< 0

since ' ÷µ ( x,r t )
' r t

< 0. Also, the unconditional (on type) probability of exit is given by: Pr ( exit at t+1 |r t ) =
!
(" ! %(" ! ! )) GC (÷µ (µE , r t )) + (1 ! " ! %(" ! ! )) GI (÷µ (µE , r t ))

"
, so that:

, Pr ( exit at t+1 |r t )

, r t
=

3
(" ! %(" ! ! ))

, GC

, ÷µ
+ (1 ! " ! %(" ! ! ))

, GI

, ÷µ

4
, ÷µ (x, r t )

, r t
< 0

G Proof of Theorem 5

Using Equations 23 and 21 we can write the di ! erence G
C
a+1 (x) ! G

I
a+1 (x) as:

G
C
a+1 (x) ! G

I
a+1 (x) = (1 ! %)

mC
a mI

a

mC
a+1 mI

a+1

- ö ÷r ( x,µ E )

0
GC

a (÷µ (x, r )) dFH !
ö ÷r ( x,µ E )

0
GI

a (÷µ (x, r )) dFL

.

However,
« ÷r ( x,µ E )

0 GC
a (÷µ (x, r )) dFH <

« ÷r ( x,µ E )
0 GC

a (÷µ (x, r )) dFL for all x % (%!, 1 ! %+ %!) because
GC

a (÷µ (x, r )) is decreasing in r and FH (r ) < F L (r ) for all r %(0, 1). Hence:

G
C
a+1 (x) ! G

I
a+1 (x) < (1 ! %)

mC
a mI

a

mC
a+1 mI

a+1

ö ÷r ( x,µ E )

0

(
GC

a (÷µ (x, r )) ! GI
a (÷µ (x, r ))

)
dFL

Hence, if GC
a (÷µ (x, r )) # GI

a (÷µ (x, r )) , then G
C
a+1 (x) < G

I
a+1 (x) for all x %(%!, 1 ! %+ %!).

When a = 0 , GC
a (÷µ (x, r )) ! GI

a (÷µ (x, r )) = 0 , so that G
C
1 (x) < G

I
1 (x) for all x % (%!, 1 ! %+ %!). On

the other hand, within the population of incumbents of age at least 1 ( a > 0), if the prior reputation
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conditional on an event A Þrst-order stochastically dominates the prior reputation conditional on an
event B , then the posteriors are also ordered by Þrst-order stochastic dominance in the same way:

Pr ( µ < x |A) # Pr ( µ < x |B ) ( Pr ( µ < x |A) # Pr ( µ < x |B ) (40)

To see this, simply observe that Pr( µ<x |A ) & Pr( µ<µ E |A )
1& Pr( µ<µ E |A ) # Pr( µ<x |B ) & Pr( µ<µ E |B )

1& Pr( µ<µ E |B ) )( Pr ( µ < x |A) #
Pr( µ<x |B )(1 & Pr( µ<µ E |A ))+Pr( µ<µ E |A ) & Pr( µ<µ E |B )

1& Pr( µ<µ E |B ) ; since 0 < Pr ( µ < µ E |A) < Pr ( µ < µ E |B ) < 1,
Pr( µ<x |B )(1 & Pr( µ<µ E |A ))+Pr( µ<µ E |A ) & Pr( µ<µ E |B )

1& Pr( µ<µ E |B ) # Pr ( µ < x |B ), so that Pr ( µ < x |A) # Pr ( µ < x |B ).
In particular,

G
C
a+1 (x) # G

I
a+1 (x) ( GC

a+1 (x) # GI
a+1 (x) . (41)

Hence, the prior reputation of a competent of any cohort Þrst-order stochastically dominate that of the
inept of the same cohort.

H Proof of Theorem 6

Let µa denote the interim reputation of a Þrm of age a. Consistency requires that E [µa ] = m C
a

m C
a + m I

a
, the

fraction of competents in cohort a. Using this and collecting terms, we can re-write Equation 23 as:
-

G
C
a+1 (x)

G
I
a+1 (x)

.

=
3

/ C
a 1 ! / C

a
/ I

a 1 ! / I
a

4 - « ÷r ( x,µ E )
0 GC

a (÷µ (x, r )) dFH« ÷r ( x,µ E )
0 GI

a (÷µ (x, r )) dFL

.

where

/ C
a =

(1 ! %+ %!)

(1 ! %+ %!) + %! 1& E [µ a ]
E [µ a ]

/ I
a =

%(1 ! ! )

%(1 ! ! ) + (1 ! %!) 1& E [µ a ]
E [µ a ]

The age! a + 1 population-wide distribution can thus be written as:

Ga+1 (x) = E [µa ]
ö ÷r ( x,µ E )

0
GC

a (÷µ (x, r )) dFH + (1 ! E [µa ])
ö ÷r ( x,µ E )

0
GI

a (÷µ (x, r )) dFL .

From the proof of Theorem 5 (Equation 40) we know that:

G
#
a+1 (x) # G

#
a (x) ( G#

a+1 (x) # G#
a (x)

and
Ga+1 (x) # Ga (x) ( Ga+1 (x) # Ga (x)

We Þrst prove that:

Lemma 10.
(

G
#
a+1 (x) # G

#
a (x) and Ga+1 (x) # Ga (x)

)
(

(
G

#
a+2 (x) # G

#
a+1 (x) and Ga+2 (x) # Ga+1 (x)

)

Proof. By hypothesis, GC
a+1 (÷µ (x, r )) # GC

a (÷µ (x, r )) and GI
a+1 (÷µ (x, r )) # GI

a (÷µ (x, r )) . Hence, G
#
a+2 (x) #

/ #
a+1

« ÷r ( x,µ E )
0 GC

a (÷µ (x, r )) dFH +
!
1 ! / #

a+1

" « ÷r ( x,µ E )
0 GI

a (÷µ (x, r )) dFL . The right hand side can be

written as: G
#
a+1 (x) +

!
/ #

a+1 ! / #
a

" ( « ÷r ( x,µ E )
0 GC

a (÷µ (x, r )) dFH !
« ÷r ( x,µ E )

0 GI
a (÷µ (x, r )) dFL

)
. Hence,

!
/ #

a+1 ! / #
a

"
> 0 is a su" cient condition for G

#
a+2 (x) # G

#
a+1 (x). Indeed, by hypothesis, Ga+1 (x) #

Ga (x), which implies that E [µa+1 ] > E [µa ], and hence
!
/ #

a+1 ! / #
a

"
> 0 for both types.

The proof for the unconditional case is analogous.

We complete the induction argument by showing that:
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Lemma 11. G#
1 (x) # G#

0 (x) and G1 (x) # G0 (x)

Proof. Follows immediatly from the fact that in a = 0 both distributions are degenerate at µE , while in
a = 1 both distributions are non-degenerate, with support starting at µE .

Finally, the initial prior distributions are also ordered in the same fashion:

Lemma 12. G
#
2 (x) # G

#
1 (x) and G2 (x) # G1 (x)

Proof. The proof follows a similar argument than that of Lemma 10 above.
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