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Abstract

The present paper solves a sequential procurement auction in which the auctioneer needs to buy a fixed

amount of inventory over a finite time horizon. Bidders strategically submit supply functions which are

aggregated by the auctioneer until they reach the required amount. The auctioneer has an outside option

which is assumed to be exogenous and highly costly. Results show that the equilibrium price of the second

stage is fixed at the price cap and that there are multiple equilibria reports in pure strategies. We study

a symmetric case which considers interior solutions only, and a maximal case, which derives a corner

solution where the more productive firm monopolizes the industry in the first period. The optimal price

posted by the auctioneer in the first stage is higher in the symmetric case than the maximal case as it

has more space to manipulate firms’ reports. In spite of this, both cases are preferable to a single-period

mechanism since the auctioneer manages to save expenses through the purchase of inventory units at a

price strictly lower than the price cap.
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and advice. I am also grateful for the support of my family throughout this process. All errors are my exclusive responsibility.
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1 Introduction

The present paper considers a sequential procurement auction model that seeks to analyze the effect of time

and quantity constraints on the auctioneer in the strategic interaction with the bidders, as well as among

bidders themselves. There are several situations in which auctions may have time limits, budget limits, and

other sorts of agreements, which act as practical time and quantity constraints. This study in particular is

focused on the effect of these last two.

Chile is one of many countries that actively publish procurement auctions through organizations such as

The Ministry of Public Works (MOP). A good example of a time constraint is the case of an auction for

the application of the National Socioeconomic Characterization Survey (Casen) that in 2013 was declared

deserted by the Ministry of Social Development due to the lack of suppliers (San Cristóbal, 2013). The

urgency of finding a guarantor in charge of carrying out the process was such that the Government enacted

a direct agreement for it to proceed, paying 10% more than the initial amount contemplated in the auction

(El Dı́namo, 2013). The reason for the time limit necessity was because they needed to execute the survey

in less than a month since otherwise the data collection would be inconsistent with previous realizations of

it. This case shows how the time limit constraint faced by the government led it to enact direct agreements

and a higher payment for the service it required.

However, there are other cases in which the auctioneer has more control over the conditions of an auc-

tion instead of facing a binding constraint as was seen previously for the case of Chile. One example is the

case of electricity auctions in Brazil, where there are two separate environments for electricity trading: a

regulated and a free contracting environment. The existence of these two environments provides the gov-

ernment with the option of managing its expenses by buying less electricity whenever prices are considered

high (Rego and Parente (2013)).

Moreover, there are also empirical studies that share the idea of a dynamic auction that will be used in

the present paper. Ji and Li (2008) analyze multi-round auctions with secret and fixed reserve prices based

on a highway construction contract. Ji and Li (2008) study how the government holds an auction over time

waiting for offers to get lower. This idea of strategically holding the auction over time is going to be impor-

tant for the purposes of the present paper, as it studies if bidders hold up the auction offers through time

in order to pressure the government and make it raise its price offers due to its time and capacity constraints.

We aim to analyze a sequential procurement auction with the distinct property that the auctioneer is forced

to buy a fixed amount of inventory (also referred to as “target inventory”) during a fixed period of time.

Bidders produce the inventory demanded through a private cost function that depends on a parameter which

reflects how efficiently they produce. The game consists of two stages. In the first stage, the auctioneer first

1
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posts a uniform price, to which bidders respond through independent supply function submissions. In the

second stage, bidders submit first and then the auctioneer chooses the unit price such that it manages to buy

the remaining quantity needed to reach the target inventory. Intuitively, both time and inventory constraints

feed back to the previous stage of the auction, encouraging sellers to refrain from offering high efficiency

parameters at the beginning, in order to force the auctioneer to buy at a higher price in the second stage.

Conversely, the auctioneer is interested in designing a way to bind its expenses and prevent the above from

happening. In this respect, one aspect of this problem that is worth noting is the disadvantageous situation

in which the auctioneer is involved.

2 Literature

Our analysis is mainly based on the literature of procurement auctions. However, there is a considerable

amount of literature which also contributes useful insights for the analysis that will be carried out next.

Among these, Su (2007) develops a model composed of a monopoly which offers a finite amount of inventory

over a finite time period, and adjusts prices dynamically in pursuance of maximizing profits. Unsold units of

inventory have zero value once the time for operation is fulfilled. This description has a lot in common with

the topic presented in this paper. In both cases there is a pressure of selling (buying) a fixed amount. In

particular, both share the main purpose of designing a price schedule that would benefit the monopolist the

most, which in this case corresponds to the auctioneer. Nevertheless, in Su (2007) customers arrive contin-

uously during the selling season and are heterogeneous regarding two dimensions: valuation for the product

and level of patience. Here, the number of bidders in the model is constant between the two rounds of the

auction, and they differentiate each other only in one dimension: cost efficiency. Similarly to Su (2007),

Chen and Zhang (2009) develop a model about dynamic pricing facing strategic customers, but diverge from

the purposes of this paper due to the use of price discrimination, since our model works with uniform prices.

The problem introduced in this paper resembles the “use it or lose it” incentive on public agencies. Karnani

(2017) studies the strategic behavior of firms in procurement auctions during the end of the year period (De-

cember), finding that the environment becomes less competitive and that price offers are closer to the price

cap. Interestingly, these results are parallel to the ones presented here, albeit derived from different sources.

In Karnani (2017), differences in capacity constraints explain the rise of price offers, as the possibility that

large firms would become single bidders increases as their competitors exhaust their capacity (marginal cost

increase from zero to infinite). However, our model presents smoother asymmetries regarding differences

on the slopes of firms’ supply functions, which are determined by their productive parameters. Here, the

fact that price offers reach the price cap is an equilibrium result induced by the auctioneer’s inelastic demand.

Regarding procurement auction literature, Jofre-Bonet and Pesendorfer (2003) model a repeated auction

2
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game using bid data of highway contracts. They study whether capacity constraints, understood as the

amount of uncompleted contracts each bidder has from auctions won in the past, can affect their ability

to win in present and future auctions. However, this case departs from the objective of the present article

because the restriction is on bidders. Instead, in this paper the restriction is on the amount the auctioneer

needs to buy, and it is assumed that bidders do not have capacity restrictions that would give them more or

less advantage against others, except for their cost differences, which will be reflected on their supply submis-

sions. Furthermore, Jofre-Bonet and Pesendorfer (2003) present a dynamic model where a new auction offer

is released in each period, whereas the present work analyzes one single auction in two periods of time. An-

other discrepancy worth mentioning is the methodology used. Jofre-Bonet and Pesendorfer (2003), as well as

Ji and Li (2008) base their bidding models on the framework of Markov dynamic decision processes. Yet, the

present paper will follow the Supply Function Equilibrium (SFE) concept, which was started by Klemperer

and Meyer (1989). Holmberg (2008) applies this last technique in the context of electricity auctions, in the

interest of finding conditions under which a unique and symmetric SFE exists. He considers a market with

symmetric producers, a price cap, perfect inelastic demand, and a capacity constraint that binds producers

with positive probability. In addition to sharing the methodology with the game presented here, Holmberg

(2008) also shares the condition that bidders behave symmetrically, but most importantly for the purposes

of this article, a perfect inelastic demand. In spite of this, Holmberg’s main focus is the capacity constraint

faced by bidders. Thus, the present paper makes further contributions by extending the game to a two-stage

auction, shifting the attention from the capacity constraint of bidders to the purchase constraint faced by

the auctioneer. Another paper that studies bidding behavior in electricity auctions is Hortaçsu and Puller

(2008), but like Holmberg (2008), it evaluates a one-stage auction, and most importantly, the auctioneer is

unrestricted on how much energy has to be transacted. The same can be seen in Wolfram (1997), but the

latter also considers theoretical insights concerning multi-unit auctions, which is a common feature with the

problem presented here.

As was mentioned in the previous section, the purpose of the present article is to model a competitive,

multi-unit, two-staged auction with a binding buying constraint. The key feature is the fact that bidders are

aware of the urgency in which the auctioneer is implicated, which changes the nature of the problem in the

way bidders respond. Essentially, this study contributes beyond usual auction models where transactions

are defined by prices and quantities. In this case quantity is fixed, and the price is forced to be such that the

target quantity is achieved. Thus, our purpose is to evaluate how bidders strategically interact when this

constraint is binding, and how the auctioneer could buy its target inventory in the most convenient terms

while preventing the price from becoming too high. In this sense, this work takes parts of existing literature

and builds upon them by adding this buying restriction, changing the focus from constraints applied on

bidders to a constraint applied on the auctioneer. In particular, it uses SPE as a modeling technique, as it

has been used in works like Vives (2011) and in particular Laplace (2016). The present paper goes in the
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spirit of Su (2007) by restricting the seller, but in a context of multi-round auctions as treated, for instance,

in Lu and Tong (2008). To the best of our knowledge, no research has been done regarding this particular

situation in which the auctioneer has a deadline and inventory to comply with.

3 The model

Consider one auctioneer that must buy Q̄ units of inventory over two periods of time, t ∈
{

1, 2
}

. Both

the target inventory and time horizon are public information. There are N bidders (firms), denoted by

i = 1, ..., N , that only produce the good demanded by the auctioneer with an increasing and convex cost

function given by Cit(Qit) =
Q2

it

2δi
, with ∂Cit

∂δi
< 0. The parameter δi ∈ [0,+∞] captures bidders’ productive

efficiency, which is unknown to the auctioneer but known between firms and constant over time1. Appendix

B provides an abbreviate introduction of the model when these parameters are private information. For

simplicity, we assume that both the bidders and the auctioneer have a discount factor equal to one. Every

period, a procurement auction is carried out where each firm decides on how to report their productive

efficiency through a supply function submission. Instead, the auctioneer chooses a price for each period in

the interest of minimizing the expenditure needed to acquire the target inventory. In the first period, the

auctioneer begins by announcing a uniform price, to which bidders respond by submitting their respective

submissions. In the second period, the price is determined endogenously: now firms play first, and the

auctioneer adjusts the price until the sum of submitted supplies in that period is equal to the remaining

units of inventory required to fulfill the target inventory. This adjustment on price is anticipated by bidders,

since the auctioneer is committed ex-ante to do so. Formally, in the first period the auctioneer announces P1

to which firms respond by submitting independent supply functions (i.e. marginal cost functions) denoted

by:

C̃ ′i1(Qi1) =
Qi1
βi1

Note that the reports are not necessarily honest, which means that βit ∈ [0,+∞] may not be δi. Each firm

will sell the amount that result from equating the posted price with their supply function:

P1 =
Qi1
βi1
⇒ Qi1 = P1βi1

As the amount sold in the second period comes from the same procedure, we can generalize the last equation:

Qit = Ptβit (1)

1Firms compete under complete information but the auctioneer is uninformed regarding firms’ productivities. Alternatively,
the auctioneer could be informed about firms’ productivities but would not be able to contract upon their cost structure.
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The total amount bought in the first period corresponds to Q1 =
∑N
i=1Qi1. In the second period, the auc-

tioneer is committed to raise the price until the total amount purchased in both periods sum Q̄. Considering

(1), this commitment can be appreciated in the following condition:

QR ≡ Q2 = Q̄−Q1 ⇔ QR = Q̄− P1(β11 + β21) (2)

We define QR as the residual demand at t = 2 to simplify notation. Since Q2 =
∑N
i=1 βi2P2, we can express

P2 as:

P2 =
QR

∑N
i=1 βi2

(3)

Notice that the auctioneer cannot surprise bidders on the second period since the price it could choose is

limited by the constraint of buying Q̄ before that period ends. Thus, although setting higher prices on the

first period may seem attractive for the auctioneer, as it may increase sales and reduce QR, it reduces the

auctioneer’s marginal income by lowering the unit price margin when the prices of each period are more

similar with each other. In addition, we assume that bidders compete symmetrically in equilibrium and

that the auctioneer has an outside option of buying inventory units at cost K. This prevents the price

from exploding and making the inventory unaffordable2. Throughout this paper, we assume that bidders

are efficient enough to be capable of serving the entire market even when the amount of inventory required

by the auctioneer is high. Since firms have an increasing cost function in the production of inventory units,

this assumption is not negligible. However, it does not make the price cap unimportant. Essentially, K is

sufficiently high so that the outside option is never taken on the equilibrium path, and also plays the role of

a threat that prevents the price from becoming undefined. For this to be true we need a parametric condition.

Assumption 3.1 Independent of how large the target inventory Q̄ is, the marginal cost of the least pro-

ductive firm of producing an extra unit of inventory would always be under the price cap K:

K >
Q̄

2δi
, if δi 6 δ−i ∀ − i ∈ N

Note this assumption asserts that firms will always be more productive than the outside option, which is the

most interesting case because otherwise the auctioneer would end up paying K3. We will start analyzing

the cases of whether the price cap is restrictive or not restrictive (i.e. the threat of the outside option is non

credible) separately, due to the interesting intuitions that each provide.

The paper proceeds as follows: Section 4 solves the sequential auction by backward induction. For this,

2Alternatively referred to as the social cost of not serving part of the residual demand.
3If firms were inefficient, the auctioneer would appeal to its alternative option. For the case of two firms, if only one them

was efficient, it would charge K for the remaining units that the unproductive firm was unable to offer.

5
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two types of equilibrium are selected as solutions of the second period: a symmetric and a maximal case,

where the latter admits an analytic and a numerical solution. Section 5 discusses important insights derived

from results obtained in the previous section, while section 6 compares the model presented in this work with

a single period mechanism. This comparison serves the purpose of evaluating how efficient our auction model

is compared to the single-period one in terms of the costs it has for the auctioneer. Section 7 concludes.

4 Equilibrium

4.1 Second period with unrestricted price cap (K =∞)

In this case, the price cap K is equal to infinity, which means that the price in the second period is unbounded.

We will start by analyzing the firms’ profit maximization problem. Since P2 is not set, and will be chosen to

meet Q̄, firms can manipulate its determination through their reports. Under strategic behavior, each firm

solves:

max
βi2

πi2 = P2Qi2 −
Q2
i2

2δi
s.t. P2 =

QR
∑N
i=1 βi2

This can be rewritten as:

max
βi2

[
QR

βi2 +
∑
j 6=i βj2

]2(
βi2 −

β2
i2

2δi

)

Lemma 4.1.1 The solution for the firm’s profit maximization problem will be restricted to positive profit

values delimited by βi2 ∈ [0, 2δi].

Proof. See Appendix A

Figure 1: Firm Profit

β∗i2 2δi

Report (βi2)

P
ro

fi
t

(π
i2

)
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Lemma 4.1.2 First order conditions lead to a symmetric best response function given by:

βi2 =
δi
∑

j 6=i βj2

δi +
∑

j 6=i βj2

Proof. See Appendix A

Let B =
∑
j 6=i βj2 to simplify notation. It can be seen that reports are strategic complements since βi2

is increasing in βj2 for any j 6= i4. The reason for the latter is as follows: From equation (3), P2 is a

decreasing and convex function of bidders’ reports5. Thus, in the margin, as B is higher, variations of βi2

have little impact on P2, whereas for lower values of B, βi2 has more impact on P2, which means more

space to manipulate P2. Therefore, for higher values of B, there are more incentives to report higher values

of βi2 and to compete as aggressively as the rest of the bidders by offering larger amounts of inventory to

the auctioneer6, since lower values of βi2 would barely increase the price. On the contrary, because P2 is

sensible to changes in individual reports, for lower values of B the incentive of bidding lower values of βi2 to

make P2 rise overpowers the incentive of increasing βi2 to offer larger amounts of inventory to the auctioneer.

Proposition 4.1.1 For the case of two players, the firms’ optimal report is βi2 = 0, which is unfeasible

because it leads to an undefined P2. Therefore, there is no equilibrium under strategic behavior.

Proof. See Appendix A

Figure 2: Best responses

β12(β22)

β
2
2
(β

1
2
)

β22(β12)

β12(β22)

Proposition 4.1.1 predicts a strong result in the sense that even though firms cannot report zero productive

4Since ∂βi2
∂B

=
δ2i

(δi+B)2
> 0.

5Note ∂P2
∂B

= −QR

(βi2+B)2
< 0, ∂

2P2
∂B2 = 2QR

(βi2+B)3
> 0.

6Recall Qi2 = βi2P2.
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efficiency, they will submit slight values of it because the temptation of entangling the auctioneer is too high.

Interestingly, without collusive behavior, all firms report minimum efficiency parameters in order to raise

the unit price they are paid for their offers. Figure 2 shows best responses functions for N = 2, where it can

be seen that they only coincide at the origin.

4.2 Second period with restrictive price cap (K <∞)

Now we analyze the case where the price cap K is relevant, as it binds the price of the second period and

prevents it from exploding. Essentially, the auctioneer adds the supply submissions made by the bidders at

t = 2 until they reach the auctioneer’s desired amount, QR. At this point, if the cleared unit price is below

K, the auctioneer pays the bidders said price times the amount each bidder offered at that price. Yet, if the

cleared price is above K, then the auctioneer would only buy the amount offered up to price K. Hence, now

it is possible that the auctioneer may buy less than QR. In this respect, firms maximize the following:

max
βi2

[
min

{
QR

βi2 +B
,K

}]2(
βi2 −

β2
i2

2δi

)
(4)

Lemma 4.2.1 The relevant support of firm reports considered in their profit maximization problem is

βi2 ∈ [0, δi].

Proof. See Appendix A

We will now begin to analyze the extreme cases. The first one occurs when B is sufficiently small, such

that even if the firm reports the highest reasonable value, βi2 = δi, the price would still be above K. In

other words, the firm faces a constant price K independent of its report. This can be expressed by the

following condition:

QR

δi +B
> K ⇔ B 6 QR −Kδi

K
(5)

Therefore, when (5) holds, (4) becomes the maximization of the second term only, which is a parabola

maximized at βi2 = δi. Thus, firms report truthfully. The second extreme case occurs when B is sufficiently

high such that even if the firm reports the lowest feasible value, βi2 = 0, the price would still be below K.

This can be expressed by:

QR

B
6 K ⇔ B > QR

K
(6)

Since the firm faces an endogenous price, the price cap K becomes irrelevant and therefore (4) is the same

as the problem of the previous section. As a result, conditional on (6), the optimal report is βi2(B) = δiB
δi+B

.

8
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Lemma 4.2.2 When the aggregate reports from other firms are B 6 QR−Kδi
K , the optimal report of firm i

at period t = 2 is βi2(B) = δi, whereas when the aggregate reports from other firms are B > QR

K , the optimal

report of firm i at period t = 2 is βi2(B) = δiB
δi+B

.

Now that we know each firm’s optimal response to both extreme cases, we aim to understand how they

respond when B ∈
[
QR−Kδi

K , Q
R

K

]
. To do this, we must calculate a threshold on reports to distinguish which

of the two prices minimized in (4) the firm is facing. In this context, the endogenous price would be lower

than the price cap if:

βi2 > QR −BK
K

This can be used to rewrite the firm’s maximization problem as:

max
βi2∈[0,δi]

{
max

βi2>QR−BK
K

(
QR

βi2 +B

)2(
βi2 −

β2
i2

2δi

)
, max
βi26QR−BK

K

K2

(
βi2 −

β2
i2

2δi

)}

Lemma 4.2.3 The optimal report for firm i at period t = 2, βi2(B), when the aggregate reports by other

firms is B ∈
[
QR−Kδi

K , Q
R

K

]
, is given by:

β∗i2 (B) = max{
δi>βi2>QR−BK

K

}
{(

δiB

δi + B

)
,

(
QR − BK

K

)}

Proof. See Appendix A

Lemma 4.2.3 establishes that optimal reports correspond to the maximum of two functions that depend

on the joint reports of the other firms, where one of the functions is increasing and the other decreasing.

Proposition 4.2.1 The best response function of firm i in period t = 2 in response to the aggregate re-

ports by other firms, βi2(B), can be separated in three sections:

βi2(B) =





δi, if B 6 QR−Kδi
K

QR−BK
K , if QR−Kδi

K 6 B 6 B̃−i(δi)

δiB
δi+B

, if B̃−i(δi) 6 B

Proof. See Appendix A

Figure 3 illustrates three segments for the best response function βi2(B). The first one corresponds to low

values of B, specifically to [0, Q
R−Kδi
K ]. As was mentioned before, in this zone, a firm’s optimal choice is

9
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Figure 3: Best responses

QR−Kδi
K

B̃−i(δi) QR

K

B

β
i2

(B
)

to report truthfully at βi2(B) = δi, since it faces a fixed price K regardless of its submission. Interestingly,

the case with a restrictive price cap diverges from the case with an un-restrictive price cap since in the

former, as the firm is unable to manipulate the price, reducing its report is meaningless because it would not

make the price go higher, whereas in the latter, lower values of B imply lower reports, making P2 become

undefined in the extreme. Moreover, from (1) we know that lower reports signify lower amounts of inventory

offered to the auctioneer, reinforcing the argument that reporting a productive efficiency less than δi is never

preferred because it leads to less units sold at the price cap K. Thus, when all other firms are reporting

low productivity parameters (i.e. high costs of production), firm i responds by offering as much as possible,

taking advantage of the high price K.

Intermediate values of B are divided into two main zones: the second and the third sections of the best

response function. While in both sections the firm is able to manipulate the price through its report, there is

a contrast between them because reports change from being strategic substitutes to strategic complements.

The point when this change occurs is defined as B̃−i(δi) ∈ B and it is denoted by7:

B̃−i(δi) =
(QR − 2Kδi) +

√
4(δiK)2 + (QR)2

2K
(7)

Let us start by analyzing the second section of the best response function. Here, reports are strategic substi-

tutes since the optimal report is decreasing in β2j for any j 6= i. In particular, as the rest of the firms report

higher values of productivity parameters, firm i is willing to report lower values of productive efficiency in

the interest of maintaining a high price, since it is aware of the ability to manipulate prices in this segment.

Nevertheless, such interaction ends when the aggregate reports of the rest of the firms is too high (larger or

equal to B̃−i(δi)) for the firm i to find it optimal to maintain a high price even when it is possible. This is the

7See proof of Proposition 4.2.1 in Appendix A.
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third segment of the best response function. Despite the ability of affecting the price, the incentive to offer

a larger amount of inventory dominates the incentive of raising P2. Thus, reports are strategic complements

since higher values of B lead to higher reports from firm i.

Furthermore, it is worth mentioning that for values of B larger than or equal to QR

K , the firm is inca-

pable of affecting the price. This occurs because the rest of the reports are so high that even if firm i reports

its lowest productivity, the price would still be under K. In contrast to the previous section, where K =∞
and reports are always increasing on the aggregate reports from other firms, under K < ∞, the optimal

response can either be constant, decreasing or increasing throughout B’s domain.

Proposition 4.2.2 In the second period, for the case of two players, there are multiple equilibria in pure

strategies given by:

∀i ∈ N , βi2 (βj2 ) ∈
[

max
{QR − δjK

K
,

QR − B̃j (δi)K

K

}
, B̃i(δj )

]

βj2 (βi2 ) =
QR − βi2K

K

Proof. From Proposition 4.2.1, we know that for certain values of aggregate reports from other firms, the

best response function of an arbitrary firm i is denoted by QR−BK
K . Since in this case there are only two

firms, the aggregate report faced by a firm is just the report of the other firm. Let i = 1 and j = 2. We start

with the conjecture that firm 2 is playing according to its decreasing section of its best response function:

β22(β12) =
QR − β12K

K
(8)

Clearing β12, we derive the analogous expression:

β12(β22) =
QR − β22K

K

We note that if we clear β12 from (8), we derive the analogous expression but with respect to firm 1. Thus,

as long as β12 and β22 are located in the domain’s section that leads the opposing firm to answer according

to its decreasing section, the strategies played by each firm are mutual best responses. In other words, if firm

2 is playing its best response to firm 1, it automatically means that firm 1 is also playing its best response to

firm 2 therefore both firm’s best responses are mutually contestable. For (8) to hold, there are two conditions

that must be satisfied:

(i) QR−δ2K
K 6 β12 6 B̃1(δ2)

11
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(ii) QR−δ1K
K 6 QR−β12K

K 6 B̃2(δ1)

Condition (i) is a direct inference from Proposition 4.2.1 and defines the relevant domain of firm 1’s report

by denoting between which values it must be located in order that firm 2 responds in accordance with its

decreasing section. Condition (ii) shows that for (8) to be an equilibrium, firm 2’s best response must be

located in the section where the optimal response of firm 1 is β12(β22) = QR−β22K
K , which happens when

β22(β12) is contained in [Q
R−δ1K
K , B̃2(δ1)]. Additionally, the left hand side inequality of condition (ii) leads

to β12 6 δ1, which is true as seen in Lemma 4.2.1. The right hand side inequality of condition (ii) leads to

β12 ≥ QR−B̃2(δ1)K
K .

To make sure that β1 is located in the section of interest, condition (i) and condition (ii) can be written as:

max

[
QR − δ2K

K
,
QR − B̃2(δ1)K

K

]
6 β12 6 B̃1(δ2)

It can be shown that there are feasible values of β12 that satisfy these conditions, since a space between their

lower and upper bound exists. That is, if we compare both QR−δ2K
K and QR−B̃2(δ1)K

K with B̃1(δ2):

QR − δ2K
K

≶ B̃1(δ2) ⇔ QR − δ2K
K

≶ (QR − 2Kδ2) +
√

4(δ2K)2 + (QR)2

2K
⇔ 0 ≶ 4(Kδ2)2

Therefore QR−δ2K
K < B̃1(δ2),

QR − B̃2(δ1)K

K
≶ B̃1(δ2) ⇔ QR

K
≶ (B̃2(δ1) + B̃1(δ2))

⇔ QR

K
≶ QR − 2Kδ2 +QR − 2Kδ1 +

√
4(δ2K)2 + (QR)2 +

√
4(δ1K)2 + (QR)2

2K
⇔ 0 ≶ (δ1 + δ2)2

Therefore QR−B̃2(δ1)K
K < B̃1(δ2).

Figure 4 depicts the best response functions for firms 1 and 2. It can be seen that both intersect in the

section in which reports are strategic substitutes, which gives delimited supports for both β12 and β22 such

that each firm’s best response corresponds to the decreasing section of its respective best response function.

Through all this intersection, there are multiple asymmetric equilibria, as well as a symmetric one given by

β12 = β22 = QR

2K .

12
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Figure 4: Best responses (N = 2)
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K
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2
2
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)

Proposition 4.2.3 For N firms, there are multiple equilibria in pure strategies given by:

If ∀i,

(i)
∑

j 6=i
βj 6 B̃−i(δi),

(ii)
∑

j 6=i
βj >

QR −Kδi
K

,

(iii)
∑

j 6=i
βj > (N − 1)

QR

K
−
∑

j 6=i
B̃i(δ−i),

Therefore, βi

(∑

j 6=i
βj

)
=
QR −K∑j 6=i βj

K

Proof. See Appendix A

Proposition 4.2.3 generalizes Proposition 4.2.2. Condition (i) and (ii) assert that for a given firm i, ag-

gregate reports of the rest of the firms must be between QR−Kδi
K and B̃−i(δi) for firm i to optimally respond

with QR−BK
K . This must be true for every i ∈ N . Therefore, all possible combinations of aggregate reports

must be contained in the interval of interest. Condition (iii) enable us to assume that all firms are indeed

optimally reporting in the decreasing section of their respective best response function.

Until now, we have learned that in the second period the auctioneer ends up paying K per unit of in-

ventory. Though the price cap is intended to play the role of a threat to prevent the price from being too

high, it ultimately becomes the cleared price from firms’ submissions8. This result is unusual because, in

8The price of the second period is cleared as P2 = QR
∑
βi2

. Let N = 2. We know that in the equilibrium path, β22 =

13
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a Bertrand world of two firms competing on prices, the cleared price is the lowest marginal cost between

both firms. In fact, the second period of our model can be observed as a competition on prices since P2 is

determined endogenously through firm’s reports, while the amount is fixed at QR. Because firms compete

on who sells larger amounts of inventory units, we should expect them to report their truthful efficiency

parameters so that they will be as productive as possible in our model. This would make their supply

functions flatter and therefore the cleared price would be strictly lower than K. Surprisingly, however, the

result is the opposite: firms manage to optimally report in such a way that the auctioneer pays the same

price it would have paid for its outside option, even though taking it is not optimal9. It is interesting how

the end result is an equilibrium behavior, despite the impression that firms have colluded.

In the next section we will study the first stage of the auction with two players and a restrictive price

cap. Because the second stage of the auction is characterized by a zone of multiple equilibria in pure strate-

gies, we select two equilibria of this zone as solutions of the second period so the auction design can be solved

accordingly. In particular, we consider a symmetric and a maximal case.

4.3 First period with restrictive price cap (K <∞): Symmetric case

Consider the symmetric case where firms report the same productive efficiency at t = 2. From Proposition

4.2.2, we know that the best response functions of both firms correspond to their decreasing section, βi2 =

QR−Kβj2

K for i 6= j ∈ N . Therefore, if β21(β12) = β12(β21) = β:

β =
QR

2K

Note that these reports are strictly positive and that, even if reports of each firm in the first period differ,

firms still report equally in the second period10. Moreover, this case is valid because it is contained in the

multiple equilibria zone defined by the interval of optimal reports.

Lemma 4.3.1 In the symmetric case, given that the optimal report of firm 2 in the second period is β22 = QR

2K ,

the optimal report of firm 1 in the second period, β12 = QR

2K , must belong to
[

max
{
QR−δ2K

K , Q
R−B̃2(δ1)K

K

}
, B̃1(δ2)

]

Proof. See Appendix A

In the first period, firms use backward induction to anticipate their profits from the second period in order to

solve their optimal reports in the first period. Since the equilibrium price of the second period corresponds

to P2 = K, each firm will maximize their total profits, which corresponds to the sum of profits over the two

QR−Kβ12
K

⇔ (β22 + β12) = QR

K
. Therefore, in this case P2 = QR

QR

K

≡ K. This also holds for N firms from Proposition 4.2.3.

9Since K is too high in comparison to the firm’s marginal cost of producing inventory units (Assumption 3.1).
10By comparing QR

2K
≶ 0⇔ QR > 0, otherwise the second period would not be carried out.

14
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periods:

πi(βi1) = P 2
1

(
βi1 −

(βi1)2

2δi

)
+K2

[
QR

2K
−
(
QR

2K

)2
1

2δi

]
(9)

Note that the residual demand depends on the reports given by both firms on the first period. Considering

(2), we can rewrite (9) as:

max
βi1

πi(βi1) = P 2
1

(
βi1 −

(βi1)2

2δi

)
+K2

[
Q̄− P1βi1 − P1βj1

2K
− (Q̄− P1βi1 − P1βj1)2

8δiK2

]
(10)

For simplicity, in this section we restrict to interior solutions only. There are important intuitions regarding

this maximization problem. First, a relevant comparison to (10) is the case where there is no second period.

If this were the case, firms would only maximize the first term of the expression above which results in

a truthful reporting11. Hence, we want to understand how the presence of the second period distorts the

optimal report from βi1 = δi. Consider the second term of the maximization presented in (10). Note that the

total profits of firm i are increasing on QR and therefore decreasing on βi1
12. This means that profits from

the second period pressure reports downwards, which lead firms to optimally submit productivity parameters

lower than δi. That is, firms claim to be more inefficient than they really are.

Lemma 4.3.2 First order conditions lead to a symmetric best response function given by:

βi1(βj1) =
2δi(2P1 −K) + Q̄− P1βj1

5P1

Proof. See Appendix A.

Figure 5 illustrates the best response functions for each firm. It can be seen that reports are strategic

substitutes since the optimal report of firm i is decreasing in βj1. Intuitively, when firm j reports higher

productivity parameters, firm i reports lower productivity parameters because it prefers to maintain a higher

residual demand for the next period even if that means selling less units in the present period while firm j

sells more units of inventory. This occurs because the effect of having a fixed price K in t = 2 is stronger

than the marginal income of selling today at P1. Moreover, dashed lines on each firm’s efficiency parameters

11Let π̂(βi) = P 2
1

(
βi − (βi)

2

2δi

)
. It is easy to see that ∂π̂

∂βi
= P 2

1

(
1 − βi

δi

)
> 0, ∂2π̂

∂β2
i

= − (P1)2

δi
< 0. Equating ∂π̂

∂βi
= 0, we

find the maximum at βi = δi.
12If we take the first derivative of firm i’s total profits πi with respect to the residual demand QR, we obtain ∂πi

∂QR =

1
2K
− QR

4K2δi
. For this to be strictly positive, 2Kδi > QR must hold. From Assumption 3.1, 2Kδi > Q̄, and since Q̄ > QR,

total profits are increasing on the residual demand as 2Kδi > Q̄ > QR ⇔ 2Kδi > QR. Finally, from Q̄ − P1βi1 − P1βj1, we

know that ∂QR

∂βi1
< 0.
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Figure 5: Best Responses
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β21(β11)

β11(β21)

are included to show how both declare to be less efficient than they really are13.

Proposition 4.3.1 Firms’ optimal reports at t = 1, when there are symmetric equilibria at t = 2, are

the following:

β11 =
(δ2 − 5δ1)(K − 2P1) + 2Q̄

12P1

β21 =
(δ1 − 5δ2)(K − 2P1) + 2Q̄

12P1

Proof. Direct from Lemma 4.3.2. Take arbitrary i = 1 and j = 2, then solve the system of equations.

Proposition 4.3.1 presents optimal reports for each firm in the first period, which are symmetric and strictly

positive if the following condition holds: 2Q̄ + (K − 2P1)(δj − 5δi) > 0, ∀ i, j = 1, 214. Interestingly, we

can see that, conditional on equal reports at t = 2, firms optimally report analogous efficiencies at t = 1.

Indeed, the difference between them depends on how their own parameters differ with each other15. Further-

more, comparative statics are not direct except that reports are increasing on the target inventory, which

is reasonable because as more units of inventory are demanded by the auctioneer, more units are offered by

firms 16. In addition, we should expect a positive relation between both firms’ reports and posted prices

in the first period, otherwise, lower P1 would lead to higher βi1, implying that firms would prefer selling

13Consider β21(β11) = −2δ2K+4δ2P1+Q̄−P1β11
5P1

. If β11 = 0, then β21 = −2δ2K+4δ2P1+Q̄
5P1

. If β21 = 0, then β11 =

−2δ2K+4δ2P1+Q̄
P1

. Comparing −2δ2K+4δ2P1+Q̄
5P1

≶ δ2 ⇔ Q̄ < (2Kδ2 + P1δ2) which holds from Assumption 3.1.
14By comparing β11 ≶ 0. Analogous for firm 2.
15Since

(δ2−5δ1)(K−2P1)+2Q̄
12P1

≶ (δ1−5δ2)(K−2P1)+2Q̄
12P1

⇔ δ1 ≶ δ2.
16Since ∂βi1

∂Q̄
= 1

6P1
> 0.

16



M.A. Thesis Tania Domic

more units at lower prices while reducing the residual demand for the next period. For this to happen the

following parametric condition must hold: K(5δi − δj) > 2Q̄17. In this context, as P1 rises, the marginal

income perceived by firms from selling in the first period gets closer to the one perceived from selling in

the second period (i.e. P1 gets closer to K). Hence, in the margin, this price difference between periods

compensates a marginal cost difference that favors t = 1, making βi1 increase. Moreover, if we calculate the

partial effect of δi on βi1, it can be seen that the sign depends on how close P1 is to K18. When K and P1 are

sufficiently close, efficiency parameters have a positive relation with firms’ reports. Conversely, when both

prices deviate sufficiently, the relation turns negative. The idea behind this is that when K is far enough

from P1, firms would prioritize maintaining high QR by decreasing βi1. Interestingly, the partial effect of δj

on βi1 is exactly the opposite of δi on βi1
19. Finally, based on the intuition given, we should expect βi1 to

relate negatively with K, which happens if δj < 5δi
20.

Now we proceed to the auctioneer’s problem. The auctioneer wants to design a way to minimize its ex-

penses made on the purchase of the target inventory Q̄. In the first period, it posts a uniform price first, to

which the firms respond by announcing a supply function by giving a report of their productivity parameter

δi. Until now we have seen how firms perform in the first period when they anticipate a symmetric equilib-

rium in the second period. This is anticipated by the auctioneer, which is also aware that the price of the

second period would be endogenously fixed at K. Let the total expenditure be defined as the sum of the

expense made in each time period:

E(P1) = P1Q1 +KQ2

As the amount bought in each period corresponds to the sum of both firms Qt = Q1t +Q2t and given that

they both report β = QR

2K in the second period, we can rewrite total expenditure as:

E(P1) = P 2
1 (β11 + β21) +KQR ⇔ E(P1) = P 2

1 (β11 + β21) +K(Q̄− P1(β11 + β21))

The auctioneer solves the following minimization problem:

min
P1

E(P1) = P1(P1 −K)(β11 + β21) +KQ̄ (11)

For this problem to make sense, the endogenous price P1 must be strictly less than K, since offering a higher

price only leads to higher expenses. If the auctioneer posts P1 = 0, the first term of the minimization is

zero, which means it does not purchase in the first period and waits for the second period to buy Q̄. On

17Since ∂βi1
∂P1

=
5Kδi−2Q̄−δjK

12(P1)2
⇔ 5Kδi − δjK ≶ 2Q̄.

18Since ∂βi1
∂δi

= −5K+10P1
12P1

≶ 0⇔ 2P1 ≷ K.
19Since ∂βi1

∂δj
= K−2P1

12P1
≶ 0⇔ K ≷ 2P1.

20Since ∂βi1
∂K

=
−5δi+δj

12P1
≶ 0⇔ −5δi + δj > 0.
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the other hand, if the auctioneer posts P1 = K, the auctioneer does not buy inventory units from the firms

and purchases the whole target inventory from its outside option at a unit price K. In this context, the first

term of the minimization represents the savings made by the auction design from the case where there is no

transaction between the auctioneer and the firms. An equivalent way of presenting the auctioneer’s decision

problem is given by:

max
P1

S(P1) = (K − P1)[P1(β11 + β21)]

Where S(P1) is a savings function that depends on the first period price. This formulation is very useful

because it shows the classic trade-off faced by a monopolist: setting a higher price incites firms to offer larger

amounts of inventory so that the auctioneer can save units of inventory to be purchased in the next period.

However, setting a higher price also decreases the auctioneer’s margin, because as P1 gets closer to K, it

reduces the unit price saved for each unit of inventory. If the reports of each firm at t = 1 did not depend

on P1, the problem would be trivial, but since they do, the auctioneer must contemplate each firm’s optimal

report when solving its problem. Let P s1 be the optimal price that minimize the auctioneer’s expenditure.

From Proposition 4.3.1, we can replace β11 and β21 in (11):

min
P1

E(P1) = P1(P1 −K)

(
Q̄−K(δ1 + δ2) + 2P1(δ1 + δ2)

3P1

)
+KQ̄ (12)

Proposition 4.3.2 Optimal price announcement for the auctioneer at t = 1, when both firms report βi2 = QR

2K

at t = 2, is given by:

P s1 =
3K(δ1 + δ2)− Q̄

4(δ1 + δ2)
⇔ P s1 =

3K

4
− Q̄

4(δ1 + δ2)

Proof. See Appendix A

Figure 6 illustrates the expenditure function minimized by the auctioneer and the optimal price. This price

clears the trade-off faced by the auctioneer and it is strictly lower than K21. We can infer interesting

insights from simple comparative statics. First, the target inventory relates negatively with the optimal

price. This means that for higher Q̄, it is preferred to save through setting a lower P1 so as to increase

the price margin (K − P1), in spite of buying less units of inventory today. Moreover, the auctioneer is

interested on the aggregate productivity efficiency (δ1 + δ2), rather than individual parameters. The aggre-

gate productivity is positively related to P1 which means that higher (δ1 + δ2) leads to higher unit prices

offers from the auctioneer to the bidders. This occurs because when P1 is closer to K, firms with higher

productivity parameters will report higher βi1, therefore the auctioneer will be able to buy more units of

inventory at t = 1. In this sense, P1 relates positively with K, since the auctioneer knows that it needs

21P s1 ≡ 3K
4
− Q̄

4(δ1+δ2)
≶ K ⇔ 0 < Q̄

4(δ1+δ2)
+ K

4
.

18



M.A. Thesis Tania Domic

Figure 6: Auctioneer Expenditure
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to maintain prices from both periods close to each other in order to attract inventory offers in the first period.

We can evaluate the optimal price on (12) and derive the total expense made by the auctioneer:

Es ≡ E(P s1 ) =
−[Q̄+K(δ1 + δ2)]2

24(δ1 + δ2)
+KQ̄ (13)

There are some intuitions we can notice from analyzing the symmetric case. Given that firms know how

many units were sold in the first period, there is no uncertainty regarding the cleared amount to be sold

in the second period, which is fixed at QR. When both firms submit equal productivities at t = 2 the

slopes of their supply functions are the same, therefore, the market is divided evenly between them for the

auctioneer to reach its target inventory (Q12 = Q22 = QR

2 ). Moreover, firms report being less productive

than they really are in both periods22. However, while in the second period their reports are independent

of their productivities, recall that in the first period the difference between reports will actually depend on

the difference in their productivities. This suggests that firms are more competitive in the first period than

the second one as more productive firms report higher submissions, making their supply functions flatter,

allowing them to offer larger amounts of inventory units than they would with a steeper supply curve. An

interesting question that emerges from this analysis is why firms still offer positive amounts of inventory in

the first period when the posted price is lower than the one cleared in the second period. Since we assume

that firm’s marginal costs are always under K, it seems more preferable for them to sell units only in the

second period rather than the first one. Nevertheless, the reason they submit parameters at t = 1 anyways

is that they fear that if they do not, the other firm could take advantage of this and sell the entire Q̄ first,

leaving the other one out of the market. This allows the auctioneer to actually post a price lower than K,

enabling it to save expenses. This is explained in more detail in section 5.

22From Figure 5 we already know firms declare to be less productive than they really are. For the second period we compare
QR

2K
≷ δi ⇒ Q̄ < 2Kδi + P1(βi1 + βj1) ∀i which holds from Assumption 3.1.
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4.4 First period with restrictive price cap (K <∞): Maximal case

Now consider an equilibrium selection for the second period of the auction such that the sum of the profits

of firm 1 and firm 2 (π12(β12) + π22(β22)) is maximized. This selection is referred as the “maximal case”.

The idea is to study how both firms behave when they anticipate large aggregate profits and compare this

case with the case when both behave equally at t = 2. In this context, we return to Proposition 4.2.2 which

derives the following firm’s optimal reports for the second period:

βi2(βj2) ∈
[

max
{QR − δjK

K
,
QR − B̃j(δi)K

K

}
, B̃i(δj)

]

βj2(βi2) =
QR − βi2K

K

Suppose arbitrarily that i = 1 and j = 2. Note that whenever βi2 takes one of its feasible extreme values,

which could be either the lowest or highest bound of the interval described above, there are three possible

equilibria:

(i) β12 = QR−Kδ2
K , β22 = δ2

(ii) β12 = QR−KB̃2(δ1)
K , β22 = B̃2(δ1)

(iii) β12 = B̃1(δ2), β22 = QR−KB̃1(δ2)
K

Cases (ii) and (iii) are analogous. Recall that the equilibrium price of the second period is P2 = K. Thus, a

general expression for total profits of both firms in the second period is given by:

π12(β12) + π22(β22) = K2
(
β12 −

β2
12

2δ1

)
+K2

(
β22 −

β2
22

2δ2

)
(14)

Let us assume without loss of generality that δ1 < δ2, which means that firm 1 is less productive than firm

2 (i.e. higher marginal cost). If we were to maximize (14), we would like β22 to be as high as possible and

β12 to be as low as possible. Indeed, because best response functions are decreasing on the equilibrium path

(strategic substitutes), in the second period, whenever we impose firm 1’s report to be as low as possible, we

are indirectly imposing β22 to be as high as possible. In this respect, the following two sections solve cases

(i) and (ii). The former has an analytic solution while the latter has a numerical solution.

4.4.1 Analytic solution

Let the selected equilibrium of the second period be the case where firm 1 reports one of its two lowest

feasible equilibrium reports:

β12 =
QR − δ2K

K
(15)
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Note that β12 would be strictly positive if the following condition holds: Q̄ > δ2K + P1(β11 + β21)23. Thus,

whether or not the less productive firm participates in the second period is not obvious. Firm 2 responds to

(15) accordingly:

β22 =
QR −K

(
QR−δ2K

K

)

K
⇔ β22 = δ2

In this case, it is direct that β22 is strictly positive, as efficiency parameters are assumed to be positive

as well. Additionally, notice that this equilibrium selection does not always hold. In particular, QR−δ2K
K

should be strictly higher than QR−B̃2(δ1)K
K for it to be firm 1’s lowest feasible report. For this to be true, the

following condition must be satisfied:

QR(δ1 + δ2) > 2Kδ2

(
δ1 +

δ2
2

)
(16)

This is a restrictive non-parametric condition that requires firm 2 to be highly efficient, which is not verifiable

ex-ante because the residual demand depends on the optimal reports made by firms in the first period.

Once we know how both firms behave in the second period, we can back up to the first period and solve each

firm’s maximization problem. In contrast to the symmetric case, here each firm faces a different problem, as

their reports on the second period are no longer the same. Replacing the definition of QR in (15), each firm

maximizes total profits as follows:

max
β11

π11(β11) = P 2
1

(
β11 −

β2
11

2δ1

)
+K2

[−δ2K − (β11 + β21)P1 + Q̄

K
− (−δ2K − (β11 + β21)P1 + Q̄)2

2δ1(K)2

]

max
β21

π21(β21) = P 2
1

(
β21 −

β2
21

2δ2

)
+
δ2K

2

2

Let us start considering an interior solution. Following the analysis made in the symmetric case, we can

study how the second period distorts each firm’s optimal report from an honest submission, βi1 = δi, which

would be the result if firms were only maximizing profits from the first period. Note that profits from the

second period perceived by firm 1 are decreasing on β11
24.The reason for this is that profits are increasing on

(QR − δ2K), which produces a negative effect on the first period optimum, resulting in a lower report than

the actual parameter δ1. Unlike firm 1, firm 2 reports honestly by submitting β21 = δ2. This is attributable

to the fact that profits perceived by firm 2 in the second period do not depend on reports from the first period.

23Since β12 ≶ 0⇔ Q̄ > δ2K + P1(β11 + β21).
24Profits perceived by firm 1 must be increasing on (Q̄− β11P1 − β21P1 − δ2K). Let Q′ = (Q̄− β11P1 − β21P1 − δ2K). Note

that ∂π11
∂Q′ ≡

(
K − Q′

δ1

)
> 0⇔ K(δ1 + δ2) > QR, which holds from Assumption 3.1. Furthermore, this condition is consistent

with QR(δ1 + δ2) > Kδ2(2δ1 + δ2) needed for this equilibrium selection, since
Kδ2(2δ1+δ2)

(δ1+δ2)
> K(δ1 + δ2)⇔ 0 < δ2

1 .
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Lemma 4.4.1 First order conditions lead to best response functions given by:

β11(β21) =
P1δ1 −K(δ1 + δ2) + Q̄− β21P1

2P1

β21(β11) = δ2

Proof. See Appendix A

Lemma 4.4.1 presents each firm’s best response function, which arises from the first order condition of

each firm’s respective problem. It can be seen that firm 2 reports honestly regardless of what firm 1 reports,

whereas firm 1’s report relates negatively with the reports given by firm 2. Unlike the symmetric case,

this section also inspects the case where firm 1 announces the least feasible productivity parameter, that is,

β11 = 0. In other words, it reports having infinite marginal costs of producing inventory goods.

Proposition 4.4.1 Firms’ optimal reports at t = 1, when there are maximal aggregate profits in the second

period through β12 = QR−δ2K
K and β22 = δ2, are given by:

β11 = max
{

0,
P1δ1 −K(δ1 + δ2) + Q̄− δ2P1

2P1

}

β21 = δ2

Proof. Direct from Lemma 4.4.1.

From Proposition 4.4.1, firm 2’s optimal report is not only strictly positive but also constant, and amounts

to its highest feasible value, which is its real productive efficiency. Surprisingly, under the assumption that

firm 1 is less productive than firm 2 (δ1 < δ2), it is easy to show that for any feasible parameters that

satisfy this assumption would derive a negative report for firm 1 in the first period, which is not possible

because the model considers positive parameters only.25. Thus, β11 = 0, which means that firm 1 refrains

from reporting and that firm 2 would be the only one offering inventory units in the first stage of the auction.

Now we proceed to solve the auctioneer’s problem. Naturally, the auctioneer internalizes how firms will

behave in the first period. The general structure of the problem faced by the auctioneer in this case is the

same as the symmetric case, except that here the productivity reports from each firm differ notably as they

are asymmetric in the second period and there is a corner solution in the first period. Total expenditure

25From comparing β11 ≶ 0⇔ P1 + Q̄ < K(δ1 + δ2) + P1(δ2 − δ1). We know Q̄ < K(δ1 + δ2) from Assumption 3.1 and that
δ1 < δ2 assumed at the beginning of this section.
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made by the auctioneer in the purchase of Q̄ is given by:

E(P1) = P 2
1 (β11 + β21) +K2(β12 + β22) ⇔ E(P1) = P 2

1 (β11 + β21) +K2
(QR
K

)

Using the definition of residual demand, this is equivalent to:

E(P1) = P1(P1 −K)(β11 + β21) +KQ̄ (17)

Note that since optimal the reports in the first period do not depend on the posted price P1, the expenditure

function is much simpler than the one derived in the symmetric case. Let Pm1 be the optimal price for the

maximal case. From Proposition 4.4.1, we can replace β11 = 0 and β21 = δ2 in (17) so that the auctioneer

minimizes the following:

min
P1

E(P1) = P1(P1 −K)(δ2) +KQ̄

Proposition 4.4.2 The optimal price announcement for the auctioneer at t = 1, when firms report β12 =

QR−δ2K
K and β22 = δ2 at t = 2, is given by:

Pm1 =
K

2

Proof. See Appendix A

Proposition 4.4.2 derives the optimal price, which is strictly lower than K. Interestingly, it is notably

different from the optimal price obtained in the symmetric case, as here the price chosen by the auctioneer

is only sensible to changes on the price cap and is independent of firms’ productivity parameters as well as

the target inventory. Intuitively, Pm1 clears the auctioneer’s trade-off between raising the price in order to

purchase more inventory units and reducing the price in order to increase savings through buying at a lower

price than K. We can evaluate Pm1 on the total expenditure function E(P1):

Em ≡ E(Pm1 ) =
−δ2K2

4
+KQ̄ (18)

We denote Em as the total expenditure made by the auctioneer in this maximal case. Since this depends, on

the reports made by each firm in the first period, Em only depends on the productivity of firm 2 as firm 1

refrains from reporting at t = 1. This contrasts with the symmetric case where the total expenditure made

by the auctioneer depends on the firms’ aggregate efficiency. Furthermore, we can compare the optimal
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prices determined in the maximal and the symmetric cases as follows:

Pm
1 ≡

K

2
≶ 3K

4
− Q̄

4(δ1 + δ2)
≡ P s

1

⇔ Q̄ ≶ K(δ1 + δ2)

From Assumption 3.1, we can conclude that Q̄ < K(δ1 + δ2), therefore Pm
1 < P s

1 . The auctioneer optimally

posts a lower price when firms’ reports differ than when they report symmetrically. The main reason for this

is that the auctioneer faces no competition in the first period of the maximal case, as firm 2 is the only one

offering inventory units. Moreover, the fact that firm 2’s report does not depend on P1 in neither of the two

time periods limits the capacity of the auctioneer to induce higher reports when increasing P1. Conversely,

in the symmetric case, reports from both firms are sensible to changes in P1 in both periods. As a result,

whenever the auctioneer changes this price, apart from the direct effect this has on the cleared amount26,

present in both cases, there is an indirect effect on firms’ reports, which is present in the symmetric case and

absent in the maximal one unless firm 1 participates in the second period. Hence, since the auctioneer has

less space of manipulation in the maximal case, it has less incentives to raise the posted price P1, explaining

why the optimal price of the maximal case is cleared below the symmetric one.

The maximal case shows us that when firms act in the interest of maximizing aggregate profits at t = 2

and their productivities differ, there is a corner solution in the first period. Regarding the second period,

the presence of competition is inconclusive because we cannot infer whether firm 1 reports a positive pa-

rameter or not27. Firm 2 reports honestly in both periods, whereas firm 1 may participate in the second

period by reporting a lower productivity parameter than its true value28. Consequently, the firm with a

higher productivity parameter is more competitive than the less productive one because it submits supply

functions with lower slopes in both periods, enabling it to obtain larger fractions of the market by selling

more. In this respect, in the symmetric case firms do not behave as aligned as they do in the maximal

one. In the former, firms face equal trade-off at t = 2 when they compete for all possible combinations of

productivities they may have. In the latter, production in the first period is concentrated in the firm that

is relatively more productive because they know the price of the second period would be fixed at K, hence

it is suboptimal for firm 1 to produce units at a higher cost and for a lower price than K instead of leaving

higher residual demand for the next period. This does not imply firms behave in a collusive manner ex-ante,

as this conclusion arises as an equilibrium behavior conditional on a particular solution selection at t = 2.

26Recall equation (1).
27We mentioned that for firm 1 to participate in the second period, the following must hold: Q̄ > δ2K + P1(β11 + β21). If

we evaluate this with the solutions derived, we obtain Q̄ ≶ 3
2
Kδ2, from which we cannot derive a conclusion.

28Since β12 ≶ δ1 ⇔ Q̄ < K(δ1 + δ2) + P1(β11 + β21) which holds from Assumption 3.1.
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4.4.2 Numerical solution

Let the selected equilibrium of the second period be the case where firm 1 reports one of its two lowest

feasible equilibrium reports. Using equation (7), we can express these reports by:

β12 =
QR − B̃2(δ1)K

K
⇔ β12 =

QR −
[

(QR−2Kδ1)+
√

4(δ1K)2+(QR)2

2K

]
K

K
(19)

β22 = B̃2(δ1) ⇔ β22 =
(QR − 2Kδ1) +

√
4(δ1K)2 + (QR)2

2K
(20)

In contrast with the analytic solution, for this equilibrium selection to be maximal, we need QR−B̃2(δ1)
K to

be strictly higher than QR−δ2K
K . For this to be true, the following condition must be satisfied:

QR(δ1 + δ2) < 2Kδ2

(
δ1 +

δ2
2

)
(21)

Note that this is the opposite of equation (16) and can also be written as:

(Q̄− P1(β11 + β21))(δ1 + δ2) < 2Kδ2

(
δ1 +

δ2
2

)
(22)

Furthermore, notice that the selected reports for each firm at t = 2 depend on each firm’s reports at t = 1

through QR29. It is relatively simple to verify that under this equilibrium selection, profit maximization

problems faced by firms in the first period do not have analytical solutions, due to the variety of orders in

(19) and (20) for the variables of interest (β11 and β21). Thus, we must solve this case numerically. Before

doing this, it is important that the initial values used for the simulation satisfy the next three conditions:

(i) 2Kδi > Q̄,∀i = 1, 2

(ii) δ1 < δ2

(iii) (Q̄− P1(β11 + β21))(δ1 + δ2) < 2Kδ2

(
δ1 + δ2

2

)

The first one corresponds to Assumption 3.1 enunciated in section 3. The second one is a necessary condition

for the maximal cases outlined at the beginning of this section, specifically in section 4.4, and the third one

is the condition just described above (22).

Now we proceed to describe the necessary steps for solving the auction design for this equilibrium selection.

We will describe two documents. The first one is descriptive as it is made for defining variables, in order

to derive an expression for firms’ profits in the first period, and the auctioneer’s expenses, which are the

ones that will be maximized and minimized respectively in the second document. The second document

contains the simulation itself, and follows the main intuition from the analytical cases studied previously

as it starts by solving each firm’s profit maximization problem, followed by the auctioneer’s minimization

problem. Both documents are included in Appendix C which corresponds to the codes used in Matlab.

29See equation (2).
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Document 1: Defining variables

• Step 1 Define the model variables and clarify sub indexes when needed.

• Step 2 Express the model variables in their reduced form.

• Step 3 Express the model variables in their extensive form. Replace when needed (Step 4 - Step

10).

• Step 4 Replace “QR” (line 15) and “root” (line 16) in “B1 kink” (line 17).

• Step 5 Replace “QR” (line 15) and “B1 kink” (line 17) in “beta 12” (line 18).

• Step 6 Replace “QR” (line 15) and “beta 12” (line 18) in “beta 22” (line 19).

• Step 7 Replace “beta 12” (line 18) in “profit 12” (line 20).

• Step 8 Replace “beta 22” (line 19) in “profit 22” (line 21).

• Step 9 Replace “profit 12” (line 20) in “profit 11” (line 22).

• Step 10 Replace “profit 22” (line 21) in “profit 21” (line 23).

Variables “profit 11”, “profit 21” and “auctioneer exp” are the ones that will be maximized and mini-

mized in Document 2, which is described below.

Document 2: Simulation

• Step 1 Define the initials values for the model parameters (lines 6-19).

• Step 2 Define grids for the variables of interest: “beta 11”, “beta 21” and “p 1” (lines 23-27).

• Step 3 Firm 1’s maximization problem (lines 44-64). A for loop fixes “beta 21”, making it iterate

through “grid beta 21”. For each iteration, it finds the “beta 11” such that “profit 11” is

maximized by using the fsolve command.

• Step 4 Generate vector of 2 columns. First column are the initial “beta 21” and second column

contains the optimal “beta 11” found in Step 5. Name it “BR firm1” (line 58).

• Step 5 Create new variable of the column vector with the optimal “beta 11” and name it

”beta11op” (line 62).
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• Step 6 Firm 2’s maximization problem (lines 74-100). A for loop fixes “beta 11”, making it

iterate through ”beta11op”. For each iteration, it finds “beta 21” such that “profit 21” is

maximized by using fsolve command.

• Step 7 Generate vector of 2 columns. First column is the ”beta11op” vector and second column

contains the optimal “beta 21” found in Step 6. Name it “BR firm2” (line 96).

• Step 8 Create new column vector with optimal “beta 11” and name it ”beta21op” (line 98).

• Step 9 Redefine “dif” as the maximum distance between each firm’s best response function iter-

ation with its previous iteration to make each function converge until it is below “tolerance”

(lines 107-109).

• Step 10 Rename initial grids of firms’ reports to their optimal reports defined in step 5 and step

8 (lines 112-113).

• Step 11 Generate while loop that contains steps 3 to 10 with a stop rule “dif>tolerance”.

• Step 12 Define 4 variables for each column of “BR firm1” and “BR firm2”. Name them “b 21”,

“b 11 optimum”, “b 11” and “b 21 optimum” accordingly (lines 121-124).

• Step 13 Define the difference between “b 21” and “b 11 optimum” as “dif beta 21” and minimize

it with fsolve command. Name minimum position “position 3”. (lines 134-136).

• Step 14 Evaluate “b 21 optimum” and “b 11” in “position 3” and call them “beta 21 STAR”

and “beta 11 STAR”. These correspond to the coordinates where the best response functions

intersect (lines 138-139).

• Step 14 Evaluate “auctioneer exp” in “beta 11 STAR” and “beta 21 STAR” (line 145).

• Step 15 Generate for loop that contains steps 3 to 14 and make it iterate “p 1” through each

element of “grid p1” .

• Step 16 Minimize “auctioneer exp” using fsolve command and call minimum position

“position 4” (line 151).

• Step 17 Evaluate “grid p1” in position 4” and name it “p1 STAR” (line 152).

• Step 18 Graph best response functions of firm 1 and firm 2 in one plot and “auctioneer exp” in

another plot (lines 161-179).

• Step 19 Use results to calculate optimal “beta 12” and “beta 22” (lines 181-185).
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The results derived from the simulation are β∗11 = 2.7847, β∗21 = 2.7102 and P ∗1 = 20. The first two are the

equilibrium reports of firms 1 and 2, respectively, in the first period of the auction. Figure 7 (a) illustrates

each firm’s best response function and a mark is made to show where these two intersect. The third result is

the optimal price that enables the auctioneer minimizes the expenditure made through the auction. Figure

7 (b) illustrates the auctioneer’s expense function over the feasible price for the first period and the point

where expenditures are minimized.

Figure 7

(a) (b)

From the results mentioned before, we can calculate equilibrium reports for the second stage thus obtaining

β∗12 = 1.8536 and β∗21 = 4.2623. As δ1 = 3.28 and δ2 = 6.5, we can observe that both firms report being less

productive than they really are in both periods, which differs from the analytical solution of the maximal case

where the more productive firm reported its real efficiency parameter in both periods. Another notorious

result is that firm 1 produces in both periods, whereas in the analytic case we found a corner solution at

t = 1 where firm 2 kept the entire market. This is more beneficial from the auctioneer’s perspective because

there is more competition between firms. Recall that in the analytic case, it was required that firm 2 should

be more productive than firm 1 (equation (16)). Based on the results obtained in this section, where δ1 is

nearly one half of δ2, firm 2 would have to be at least 50% more productive than firm 1 to be under the

conditions described in the analytic solution. Finally, it is worth mentioning that P ∗1 is much smaller than

the price cap K = 40, which suggests that the auctioneer prefers to buy fewer units at a lower price than

posting a price closer to K to increase its purchases.
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5 Discussion

The existence of two periods in the model has implications worth noting. The first one is that firms can dis-

tribute their production over time in order to smooth their costs. This is a natural consequence attributable

to firms’ increasing marginal cost functions on the amount produced in the model. Recall that there is no

discount between the two periods. The second one is a strategic intertemporal interaction between firms.

Even though firms know that in the second period the price would be fixed at K, both are willing to sell

positive amounts of inventory at a lower price in the first period because they know that, if one them does

not, the other firm may offer the entire target inventory first, leaving the rest with zero profit. Hence, the

first stage of the auction induces firms to compete, making submissions less aggressive for the auctioneer

who is able to purchase some units at a price below the price cap. This explains how competition changes

between the first period and the second period. From section 4.1, we know that whenever the auctioneer’s

demand is known by firms and they compete freely on prices (i.e. without a restrictive price cap), the cleared

price explodes up to K. This occurs because firms’ submissions would not affect the quantity needed to

be purchased at the end of the period, encouraging them to charge what benefits them the most. Con-

versely, when the auctioneer announces a fixed price first and lets firms compete on quantities, as happens in

the first stage, the auctioneer obtains some utility through the acquisition of inventory units cheaper than K.

Another striking aspect regarding the symmetric case of our model is that total expenditures perceived

by the auctioneer depend on the sum of firms’ efficiency parameters instead of depending on each parameter

individually30. As a result, the optimal price of the first stage is the same independently of whether one

firm is far more productive than the other or whether both are equally productive. This is not obvious in

an auction context. For instance, in second price auction models generalized by Vickrey (1961), firms would

sell goods at the marginal cost of the second most productive firm. In this context, whether firms are similar

or not in terms of efficiency is crucial because firms with closer costs will enforce more competitive pressure

between them, determining how much the auctioneer would end up paying in the first period. In this sense,

in a second price auction the auctioneer prefers bidders to be similar in terms of efficiency, while, under the

symmetric solution of our model, the auctioneer is only concerned with the aggregate efficiency rather than

the structure of the industry. This observation is not applicable to the analytical solution of the maximal

case studied, since in that scenario the auctioneer faces a monopoly in the first stage of the auction, making

its expenses depend only on one firm’s efficiency.

30See equation (13) from sections 4.3.
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6 Comparison with a one-period mechanism

In this section, we will study the convenience of the mechanism presented in this work by contrasting it

with a single period mechanism. We aim to isolate the strategic intertemporal effect that arises in our main

model from the one-period auction introduced in this section, since both would be identical except for this

component. In particular, consider the case where the auctioneer only has one period to purchase its target

inventory Q̄ and performs two auctions of Q̄
2 each in the same period. The reason why the auction is made

in two rounds is to avoid discrepancies with the paper’s main model, since making firms produce only once

would not be fair due to the functional form of their costs. Note that in both rounds there is no uncertainty

regarding the amount to be bought by the auctioneer, so that firm’s submissions in one round do not affect

the result of the other, turning them into two independent auctions. Consequently, firms solve the same

problem as in section 4.2, except that they maximize over Q̄
2 (exogenous), instead of QR (endogenous). This

results in a cleared unit price of K, leading the auctioneer to spend KQ̄ for all the units it demands31. Notice

that in this new model the existence of an outside option matters, as the price would explode otherwise.

Essentially, we intend to compare the total expenditure made by the auctioneer in a single period mechanism

with our sequential auction model, which can be respectively generalized as:

(i) KQ̄

(ii) P1(P1β11 + P1β21) +K(Q̄− P1(β21 + β22))

Observe that (ii) is cheaper than (i), as in (i) all units are sold at the price cap, which means that the

auctioneer will save money by reducing its expenses as long as it buys units in the first period at prices

strictly lower than K. Thus, savings attained when implementing a two-period auction model, instead of

two auctions in one period, correspond to the difference between the two terms listed above. Consider

the symmetric case and the analytic solution of the maximal case studied previously. We are interested

in analyzing how the auctioneer’s savings change as the firms’ efficiency increases. In order to do this, we

calculate the portion of savings made in each case relative to the total expenditure made on the single period

model (KQ̄). These are denoted as ∆Es and ∆Em for the symmetric and maximal case respectively, where

the first one depends on the aggregate productivity of the industry (δ1 + δ2), while the second one only

depends on the productivity of the more efficient firm (δ2). Using equations (13) and (18), we calculate the

portion of savings for the symmetric and the maximal case:

∆Es =
Es −KQ̄
KQ̄

⇔ ∆Es =
−[Q̄+K(δ1 + δ2)]2

24KQ̄(δ1 + δ2)
(23)

∆Em =
Em −KQ̄
KQ̄

⇔ ∆Em =
−Kδ2

4Q̄
(24)

31Total expenditures made by the auctioneer is given by K Q̄
2

+K Q̄
2

= KQ̄.
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Note that both expressions are negative as they are savings for the auctioneer. Figure 8 illustrates the

relationship between the savings from the symmetric case (23) and the maximal case (24) with the aggregate

efficiency of firms and the efficiency of firm 2 respectively. Recall that in the maximal case we assume that

δ1 < δ2. Therefore, Figure 8 (b) holds as long as firm 1 is less productive than firm 2 for all feasible values

of δ2 being considered. It can be observed that, as productivities go to infinity, savings tend to −∞ in both

cases.

δ1 + δ2

∆
Es

(a) Symmetric case

δ2

∆
Em

(b) Maximal case

Figure 8: Expenditure savings

One way of understanding the savings trends for both cases is to study how the posted price of the first

period changes as the aggregate efficiency of the industry increase indefinitely. Indeed, if we take the limit

of the optimal prices derived in Proposition 4.3.2 and Proposition 4.4.2 when (δ1 + δ2) goes to infinity, we

obtain the following:

lim
(δ1+δ2)→+∞

P s1 ≡ lim
(δ1+δ2)→+∞

(3K

4
− Q̄

4(δ1 + δ2)

)
=

3K

4

lim
(δ1+δ2)→+∞

Pm1 ≡ lim
(δ1+δ2)→+∞

(K
2

)
=
K

2

We can see that when the sum of productivities is sufficiently high, the optimal price for the auctioneer ap-

proaches 3K
4 in the symmetric case and K

2 in the maximal case. Note that the optimal price in the symmetric

case relates positively with the sum of firms’ efficiencies, whereas in the maximal case it is independent from

any change in firms’ efficiencies. In spite of this, in both cases the optimal price never gets close enough for

it to be equal to K as (δ1 + δ2) rises. Therefore, since a difference between the price cap and the optimal

price will always exist, the auctioneer’s savings are undefined in the limit because they never stop increasing.

Furthermore, we can observe from Figure 8 that the path of savings in the symmetric case has an inverted

u-shape while the maximal case is linear. In the first one, changes on productivities affect both the optimal
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price P s1 and firms’ optimal reports β11 and β21, whereas in the second one, changes on productivities leave

Pm1 unchanged while increases in δ2 are indeed the same increases suffered by firm 2’s optimal report as it

reports truthfully in both periods. Indeed, this explains why variations in savings fluctuate in the symmetric

case but are constant in the maximal one.

These results illustrate how the implications for the auctioneer’s savings vary upon which equilibrium occurs

during the second period. We have seen that, when comparing two distant equilibrium selections in terms of

the optimal strategies followed by firms, the auctioneer reduces expenditure in both scenarios as the industry

become infinitely efficient in the production of the inventory it demands.

7 Concluding remarks

This paper presents a model with an auctioneer that is forced to buy a fixed amount of inventory over a

finite time horizon. As these conditions are known by strategic bidders (firms), the auctioneer must design

a mechanism that would allow it to minimize its expenses. We learned that when quantities are fixed and

firms compete on prices, the cleared price rises until it reaches the price cap. Thus, from the auctioneer’s

perspective, it would be more convenient to post a fixed price and let firms compete on quantities, but this

would not be credible since firms know the auctioneer must achieve a target inventory before the second

period ends. Hence, the auctioneer combines these two alternatives by fixing a price in the first period while

letting the price be endogenously determined in the second period. This mechanism is preferable to the case

where the auctioneer buys all units in one period, since acquiring units at a price strictly lower than the

price cap provides it the chance to save expenses.
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Appendix A: Lemmas and Proofs

Lemma 4.1.1

Proof. Firm’s maximization:

max
βi2

π(βi2) =

[
QR

βi2 +
∑
j 6=i βj2

]2

βi2

(
1− βi2

2δi

)

For profits to be null, either QR = 0, βi2 = 0, or βi2 − β2
i2

2δi
= 0 must be true. The first option is not possible

because if there was not a positive amount of residual demand, the game would be over on the first period

since the auctioneer would have already purchased its target inventory Q̄. If the second option is true, the

profit function would contain the origin. If the third condition is true, then βi2 = 2δi. Therefore, the function

crosses the x axis in two points, (0, 0) and (2δi, 0).

Taking the first derivative of the profit function we get:

π′i2(βi2) =
(QR)2

δi(βi2 +
∑
j 6=i βj2)3

[
δi
∑

j 6=i
βj2 − βi2

(∑

j 6=i
βj2 + δi

)]

Equating it to zero, we can express the critical value as:

β∗i2 =
δi
∑
j 6=i βj2

δi +
∑
j 6=i βj2

There is only one critical value since cases for which the first derivative does not exist are discarded due to

non negative conditions. The second derivative is:

π′′i2(βi2) =
(QR)2[

∑
j 6=i βj2(2βi2 − 4δi) + 2βi2δi − (

∑
j 6=i βj2)2]

δi(βi2 +
∑
j 6=i βj2)4

Evaluating the critical value (β∗i2) in the second derivative:

π′′i2(β∗i2) =
−(QR)2(

∑
j 6=i βj2 + δi)

4

δ1(
∑
j 6=i βj2)3[2δi +

∑
j 6=i βj2]3

< 0

Thus the profit function is strictly concave at β∗i2.

Lemma 4.1.2

Proof. Direct from Lemma 4.1.1, taking first order condition on the firm’s maximization problem.

Proposition 4.1.1
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Proof. For N = 2 firm i’s best response is denoted by:

β2(β1) =
δ2β1

δ2 + β1

We omit time subscripts to simplify notation. Deriving both sides of the equation with respect to β1:

β′2(β1) =
δ2
2

(δ2 + β1)2
> 0

Evaluating β1 = 0 on the first derivative:

β′2(0) =
δ2
2

(δ2 + 0)2
= 1

Taking the second derivative we get:

β′′2 (β1) =
−2δ2

2

(δ2 + β1)3
< 0

Thus the best response function is strictly concave, and since the slope at the origin is equal to one, both

functions would not intersect at any other point apart from the origin. Here, as β1 = β2 = 0, P2 = QR

β1+β2

explodes to infinity, which is not affordable for the auctioneer and therefore is discarded. Consequently, there

is no feasible equilibrium.

Lemma 4.2.1

Proof. Firms maximize:

max
βi2

[
min

{
QR

βi2 +B
,K

}]2(
βi2 −

β2
i2

2δi

)

There are two relevant cases. The first one is when the minimum price is QR

βi2+B . We know from Lemma

4.1.2 that the optimal report for this maximization is βi2 = δiB
δi+B

.

The second case is when the minimum price is K. As the latter is constant, the firm maximization problem

is the maximum of βi2 − β2
i2

2δi
, which is δi.

It can be verified that δi >
δiB
δi+B

since (δi)
2 > 0. Therefore, the highest value for βi2 is δi.

Lemma 4.2.3

Proof. Firm maximizes:

max
βi2∈[0,δi]

{
max

βi2>QR−BK
K

(
QR

βi2 +B

)2(
βi2 −

β2
i2

2δi

)
, max
βi26QR−BK

K

K2

(
βi2 −

β2
i2

2δi

)}
(25)
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Let us first focus on the right hand maximization. If the firm could decide its report freely, it would choose

βi2 = δi. But since reports are bounded from above, there are two cases to consider: when δi <
QR−BK

K and

when δi > QR−BK
K . If the first case is true, other firms’ reports, B, must satisfy:

B <
QR −Kδi

K

The optimal report is βi2 = δi. Indeed, this case is irrelevant as it was already covered in section 4.2

(condition (5)). Therefore, we are always in the second case where δi > QR−BK
K . Here, the optimal report

is the upper bound of the support:

βi2 =
QR −BK

K
(26)

The reason for the latter is that the function that is being maximized,
(
βi2 − β2

i2

2δi

)
, has a unique maximum

at βi2 = δi, so it is increasing for the domain considered in the second case. Note that (26) is equivalent to:

K =
QR

βi2 +B
(27)

Interestingly, at the optimal report, the price cap is equal to the endogenous price, making the two initial

maximization problems of (25) the same. Consequently, conditional on (27), we can reduce the referred

problem to:

max{
δi>βi2>QR−BK

K

}
(

QR

βi2 +B

)2(
βi2 −

β2
i2

2δi

)

To solve this maximization, note that if the firm could freely choose βi2, the solution would be βi2 = δiB
δi+B

(Lemma 4.1.2). However, as reports are bounded, we need to analyze the cases in which the unrestricted

optimum is contained in the support of βi2 and when it is not contained separately. Following the same

logic as before, since the function is increasing until it reaches its unrestricted maximum, if Q
R−BK
K 6 δiB

δi+B
,

then the optimal report is βi2 = δiB
δi+B

, while if QR−BK
K > δiB

δi+B
, the optimal report is βi2 = QR−BK

K . This

is equivalent to:

β∗i2 (B) = max{
δi>βi2>QR−BK

K

}
{(

δiB

δi + B

)
,

(
QR − BK

K

)}

Proposition 4.2.1
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Proof. From Lemma 4.2.3, we know that if B ∈
[
QR−Kδi

K , Q
R

K

]
, the optimal report for the firm is:

β∗i2(B) = max{
δi>βi2>QR−BK

K

}
{(

δiB

δi +B

)
,

(
QR −BK

K

)}
(28)

First we want to know for which value of B the two arguments of the maximum are equal. We will define

this value as B̃. In this respect:

(
δiB

δi +B

)
=

(
QR −BK

K

)

Or equivalently:

B2K +B(2Kδi −QR)− δiQR = 0

The solution to this quadratic equation is:

B =
−(2Kδi −QR)±

√
(2Kδi)2 + (QR)2

2K

We will use the positive solution since (−2Kδi + QR) <
√

(2Kδi)2 + (QR)2, (the sum of the rest of firms’

reports) cannot be negative. Consequently:

B̃−i(δi) =
(QR − 2Kδi) +

√
4(δiK)2 + (QR)2

2K

Note that (28) is the maximum of two functions that depend on B. The left hand side function is increasing,

concave, and converges to δi as B goes to infinity. Whereas the right hand side function is linear with slope

−1. If we evaluate both functions on B = QR−Kδi
K and compare them:

δi ≶
δi(Q

R −Kδi)
QR

⇔ δiK ≶ 0

Therefore,
(
QR−BK

K

)
>
(
δiB
δi+B

)
at B = QR−Kδi

K .

If we evaluate both functions on B = QR

K and compare them:

δiQ
R

δiK +QR
≶ 0 ⇔ δiQ

R ≶ 0

Therefore,
(
δiB
δi+B

)
>
(
QR−BK

K

)
at B = QR

K .

From the intermediate value theorem (Carter, 2001), we know this two functions coincide in at least one

point. Moreover, as one function is strictly decreasing and the other one is strictly increasing, we know this

point exists and is unique. This is a sufficient condition to justify the existence of each segment of the best

38



M.A. Thesis Tania Domic

response function.

Proposition 4.2.3

Proof. Suppose every firm i ∈ N faces an aggregate report from the rest of the firms, B−i, such that it is

optimal for it to respond in accordance with its decreasing section of its best response function (Proposition

4.2.1):

βi

(∑

j 6=i
βj

)
=
QR −K∑j 6=i βj

K
, ∀i ∈ N

For this to hold, B−i must be located in the relevant domain for firm i:

QR −Kδi
K

6
∑

j 6=i
βj 6 B̃−i(δi)

For any arbitrary m 6= i,m ∈ N , this is equivalent to:

QR −Kδi
K

6 βm +
∑

l 6=i,m
βl 6 B̃−i(δi)

Since all firms are reporting accordingly, we can re express the middle term as:

QR −Kδi
K

6
QR −K∑j 6=m βj

K
+
∑

l 6=i,m
βl 6 B̃−i(δi) ⇔ QR −Kδi

K
6 QR −Kβi

K
6 B̃−i(δi)

We already know that the lower bound is irrelevant since from Lemma 4.2.1, βi 6 δi is always true. The

upper bound instead, derives the following condition:

βi >
QR −KB̃−i(δi)

K
, ∀i ∈ N

Considering an arbitrary j 6= i, j ∈ N and adding up through all the firms expect i:

∑

j 6=i
βj > (N − 1)

QR

k
−
∑

j 6=i
B̃j

Lemma 4.3.1

Proof. Direct from Proposition 4.2.2. If β22(β12) = QR

2K , for β12(β22) = QR

2K to be an optimal report the

following must be true:

β12 ∈
[

max
{QR − δ2K

K
,
QR − B̃2(δ1)K

K

}
, B̃1(δ2)

]
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To show this, we compare the optimal report with each bound to see if it is actually contained in the interval.

(i)
QR

2K
≶ QR − δ2K

K
⇔ 2δ2K ≶ QR

(ii)
QR

2K
≶ QR − B̃2(δ1)K

K
⇔ QR ≶ 0

(iii)
QR

2K
≶ B̃1(δ2) ⇔ 0 ≶ (QR)2

The last two conditions are direct and allow us to conclude that QR

2K > QR−B̃2(δ1)K
K and QR

2K < B̃1(δ2) at

β22 = QR

2K . Condition (i) can be solved with Assumption 3.1 denoted at the beginning of the paper which

stands 2δiK > Q̄. Since Q̄ > QR, it is also true that 2δiK > QR and therefore QR

2K > QR−δ2K
K .

Lemma 4.3.2

Proof. Firm’s maximize:

max
βi1

πi1(βi1) = P 2
1

(
βi1 −

(βi1)2

2δi

)
+K2

[
Q̄− P1βi1 − P1βj1

2K
− (Q̄− P1βi1 − P1βj1)2

8δiK2

]

Taking the first derivative of the profit function we get:

π′i1(βi1) = P 2
1

(
1− βi1

δi

)
+K2

[
−P1

2K
+

2P1(Q̄− P1βi1 − P1βj1)

8δiK2

]

Equating it to zero, we obtain the critical value:

βi1 =
4P1δi + Q̄− P1βj1 − 2Kδi

5P1

The second derivative is:

π′′i1(βi1) =
−5P 2

1

4δi
< 0

Thus the profit function if strictly concave.

Proposition 4.3.2

Proof. The auctioneer minimize expenses as:

min
P1

E(P1) = P1(P1 −K)

(
Q̄−K(δ1 + δ2) + 2P1(δ1 + δ2)

3P1

)
+KQ̄

Note that expenditure cannot be null because K and Q̄ are strictly positive. Taking the first derivative:

E ′(P1) = −K(δ1 + δ2) +
Q̄

3
+

4

3
P1(δ1 + δ2)
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Equating it to zero, we obtain the critical value:

P1 =
3K(δ1 + δ2)− Q̄

4(δ1 + δ2)

The second derivative is:

E ′′(P1) =
4

3(δ1 + δ2)
> 0

Thus the expense function is strictly convex.

Lemma 4.4.1

Proof. Each firm maximizes solve the following:

max
β11

π11(β11) = P 2
1

(
β11 −

β2
11

2δ1

)
+K2

[−δ2K − (β11 + β21)P1 + Q̄

K
− (−δ2K − (β11 + β21)P1 + Q̄)2

2δ1(K)2

]

max
β21

π21(β21) = P 2
1

(
β21 −

β2
21

2δ2

)
+
δ2K

2

2

We will start analyzing firm 1. Taking first derivative we get:

π′11(β11) = (P1)2
(

1− β11

δ1

)
+K2

[−P1

K
+
P1(Q̄− P1β11 − P1β21 − δ2K)

δ1K2

]

Equating it to zero, we can express the critical value as:

β11(β21) =
P1δ1 −K(δ1 + δ2) + Q̄− β21P1

2P1

Second derivative is:

π′′11(β11) =
−2(P1)2

δ1
< 0

Now we study the problem of firm 2. Taking first derivative we get:

π′21(β21) = (P1)2
(

1− β21

δ2

)

Equating it to zero, we can express the critical value as:

β21 = δ2
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Second derivative is:

π′′21(β21) =
−(P1)2

δ2
< 0

Proposition 4.4.2

Proof. The auctioneer minimize expenses as:

min
P1

E(P1) = P1(P1 −K)(δ2) +KQ̄

Note that expenditure cannot be null because K and Q̄ are strictly positive. Taking the first derivative:

E ′(P1) = δ2(2P1 −K)

Equating it to zero, we obtain the critical value:

P1 =
K

2

The second derivative is:

E ′′(P1) = 2δ2 > 0

Thus the expense function if strictly convex.
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Appendix B: About private information on parameters

The objective of this section is to give a brief overview on how the sequential auction model of this paper

changes with the introduction of incomplete information. Under the same setting presented in section 3,

suppose now that firms’ efficiency parameters, δi ∈ [0,+∞], are no longer common information but private

information drawn independently from a common distribution, which for simplicity is assumed to be uniform

between zero and one (δi ∼ U [0, 1]). Following the logic of section 4.1, we consider the second stage of the

auction model with a restrictive price cap and two firms, referred to as firm i and firm j. As a consequence

of information asymmetry, the model turns into a Bayesian game characterized by:

〈 I, {βi}i∈I , {δi}, {πi}i∈I , f 〉

Where I = 2 corresponds to the number of firms competing in the auction, and βi : [δi, δi] → IR+ is the

strategy played by firm i, which is a function that goes from the set of types to the set of strategies it can

take. In addition, δi ∈ ∆i corresponds to each firm’s type, which reflects their level of productivity, πi is the

profit function of firm i and f is a probability density function that describes the probability of occurrence

of a specific type of realization.

We are looking for a symmetric equilibrium, which means solving the problem faced by firm i while as-

suming that the other firm is also playing the same strategy (i.e. same function βj). Notice that the two

firms’ types are equal ex-ante but they become different once their types are realized and privately an-

nounced. In pursuance of simplifying the firms’ profit maximization problem, we assume that they produce

inventory goods with a cost function denoted by: Ci(Qi) =
δiQ

2
i

2 . The only difference with the cost function

described in our main model is that the interpretation of δi is reversed, as now higher values imply lower

productivity and vice-versa. From a supply function equilibrium, firms submit their marginal cost functions

by announcing their strategies:

C̃ ′i(Qi) = β(δi)Qi

Note that, unlike the model, firms report functions of their parameters under certainty, instead of reporting

values for their parameters directly. Moreover, for a given price of the second period, firms will offer until

their marginal cost equals P2, therefore:

P2 = β(δi)Qi ⇔ Qi =
P2

β(δi)

43



M.A. Thesis Tania Domic

Since the auctioneer is committed to fix P2 such that it manages to buy the remaining units needed to reach

Q̄, we can express this endogenous price as:

QR = Qi +Qj ⇔ QR =
P2

β(δi)
+

P2

β(δj)
⇔ P2 =

QRβ(δi)β(δj)

(β(δi) + β(δj))
(29)

That is, price can be expressed in terms of firms’ strategies. Now we are in conditions to solve the firms’

maximization problem. This consists on choosing the optimal strategy that enables a firm to obtain the

highest feasible profit from selling inventory units to the auctioneer, given that the other firm is playing its

optimal strategy. In this respect, profits perceived by firm i can be expressed as:

πi = P2Qi −
δiQ

2
i

2
⇔ P2

(
P2

β(δi)

)
− δi

2

(
P2

β(δi)

)2

⇔ P 2
2

[
1

β(δi)
− δi

2β(δi)2

]
(30)

Since firm i does not know the productivity parameter of firm j, δj , it maximizes over its own expected

utility. Replacing (29) in (30), the firms’ maximization problem can be written as:

max
β(δi)

∫ 1

δj=0

[
QRβ(δj)

(β(δi) + β(δj))

]2[
β(δi)−

δi
2

]
f(δj)dδj

Taking the first derivative and equating it to zero, we can characterize the optimal strategy β(δi)
∗ as the

best response to the optimal strategy made by the other firm:

∫ 1

δj=0

[
(QRβ(δj))

2

(β(δi)∗ + β(δj))3

]
(
β(δj)− β(δi)

∗ + δi
)
f(δj)dδj = 0 (31)

Since QR is taken as a constant we can omit it from the integral equation. This happens because, as we

are solving the second period and the amount sold in the previous period is known, firms are aware of the

residual demand when they solve their optimization problem. Thus, (31) can be rewritten as:

∫ 1

δj=0

(β(δj))
3

(β(δi)∗ + β(δj))3
f(δj)dδj = (β(δi)

∗ − δi)
∫ 1

δj=0

(β(δj))
2

(β(δi)∗ + β(δj))3
f(δj)dδj

A natural way to proceed from this point forward is to guess a linear function for the symmetric equilibrium

strategy β(δi) such that the integral equation holds. This method works in various contexts. For instance,

in Laplace (2016) and Vives (2011). In our particular case we conjectured β(δi) = αδi and β(δi) = αδi + γ

as linear guesses but none of them worked. Hence, we conclude that the Bayesian game of the second stage

is not linear, thus it is preferable that it be solved numerically.
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Appendix C: Code

Document 1: Defining variables

1 % Definitions and Notation:

2 % beta_it (i=firm , t=period) = report of firm i in period t.

3 % profit_it (i=firm , t=period) = profits perceived by firm i at period t.

4 % exp_auctioneer= total expenses made by auctioneer.

5 % B1_kink= value of aggregate reports of the rest of the firms for which

6 %the best response function changes from strategic substitutes

7 %to strategic complements.

8 % QR=residual demand.

9 % delta_1=efficiency parameter of firm 1.

10 % delta_2=efficiency parameter of firm 2.

11 % K=Price cap

12 % p1=unit unit price at period 1, announced by the auctioneer.

13

14 % Variables in their reduced form:

15 QR=qbar -p1.*( beta_11+beta_21)

16 root=sqrt((QR).^2+(2.*K.* delta_1).^2)

17 B1_kink =(QR -(2.*K.* delta_1)+root)./(2.*K)

18 beta_12 =(QR -B1_kink .*K)./(K)

19 beta_22 =(QR -beta_12 .*K)./(K)

20 profit_12=K.^2.*(( beta_12) -((beta_12).^2./(2.* delta_1)))

21 profit_22=K.^2.*(( beta_22) -((beta_22).^2./(2.* delta_2)))

22 profit_11=p1 .^2.*( beta_11 -(( beta_11).^2./(2.* delta_1)))+( profit_12)

23 profit_21=p1 .^2.*( beta_21 -(( beta_21).^2./(2.* delta_2)))+( profit_22)

24 exp_auctioneer=p1 ^2.*( beta_11+beta_21)+K^2.*( beta_12+beta_22)

25

26 % Variables in their extensive form:

27 QR=qbar -p1.*( beta_11+beta_21)

28 root=sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*K.* delta_1).^2)

29 B1_kink =(qbar -p1.*( beta_11+beta_21) -(2.*K.* delta_1)+root)./(2.*K)

30 beta_12 =(qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...

31 (2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+...

32 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)

33 beta_22 =(qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...
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34 ((qbar -p1.*( beta_11+beta_21) -(2.*K.* delta_1)+(sqrt((qbar -p1 .*...

35 (beta_11+beta_21)).^2+(2.*K.* delta_1).^2)))./(2.*K)).*K)./...

36 (K)).*K)./(K)

37 profit_12=K.^2.*((( qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11 +...

38 beta_21) -(2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11 +...

39 beta_21)).^2+(2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)) -...

40 (((qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21)...

41 -(2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+...

42 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)).^2./(2.* delta_1)))

43 profit_22=K.^2.*((( qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11 +...

44 beta_21) -((qbar -p1.*( beta_11+beta_21) -(2.*K.* delta_1)+...

45 (sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*K.* delta_1).^2)))...

46 ./(2.*K)).*K)./(K)).*K)./(K)) -(((qbar -p1.*( beta_11+beta_21) -...

47 ((qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...

48 (2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*...

49 K.* delta_1).^2)))./(2.*K)).*K)./(K)).*K)./(K)).^2./(2.* delta_2))

)

50 profit_11=p1 .^2.*( beta_11 -(( beta_11).^2./(2.* delta_1)))+(K.^2.*...

51 (((qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...

52 (2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*...

53 K.* delta_1).^2)))./(2.*K)).*K)./(K)) -(((qbar -p1.*( beta_11 +...

54 beta_21) -((qbar -p1.*( beta_11+beta_21) -(2.*K.* delta_1)+...

55 (sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*K.* delta_1).^2)))...

56 ./(2.*K)).*K)./(K)).^2./(2.* delta_1))))

57 profit_21=p1 .^2.*( beta_21 -(( beta_21).^2./(2.* delta_2)))+(K.^2.*((( qbar -...

58 p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -((qbar -...

59 p1.*( beta_11+beta_21) -(2.*K.* delta_1)+(sqrt((qbar -p1 .*...

60 (beta_11+beta_21)).^2+(2.*K.* delta_1).^2)))./(2.*K)).*K)./...

61 (K)).*K)./(K)) -(((qbar -p1.*( beta_11+beta_21) -((qbar -p1.*...

62 (beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -(2.*K.*...

63 delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*K.*...

64 delta_1).^2)))./(2.*K)).*K)./(K)).*K)./(K)).^2./(2.* delta_2))))

65 auctioneer_exp=p1.*( beta_11+beta_21)+K^2.*( beta_12+beta_22)

46



M.A. Thesis Tania Domic

Document 2: Simulation

1 clc

2 clear

3 close all

4

5 %MODEL PARAMETERS

6 p1=30 % Initial value for price of the first period.

7 qbar =354.55 % Target inventory

8 K=40 % Unit price of outside option.

9 delta_1 =3.28 % Efficiency parameter of firm 1.

10 delta_2 =6.5 % Efficiency parameter of firm 2.

11 q_beta =1000 % Number of feasible reports from firm 1 and firm 2.

12 max_beta_11 =3.28 % Maximum feasible report for firm 1.

13 max_beta_21 =6.5 % Maximum feasible report for firm 2.

14 min_beta_11 =0.5 % Minimum feasible report for firm 1.

15 min_beta_21 =0.5 % Minimum feasible report for firm 2.

16 min_p1 =15 % Minimum feasible price of period 1.

17 max_p1 =39.5 % Maximum feasible price of period 1.

18 q_p1 =1000 % Number of feasible prices for period 1.

19 tolerance =5; % Tolerance between iterations of best response

20 % functions with itself for firm 1 and firm 2.

21 %%

22 %GRIDS

23 grid_beta_11=linspace(min_beta_11 ,max_beta_11 ,q_beta)’;

24 %Grid , column vector of "q_beta" feasible reports for firm 1.

25 grid_beta_21=linspace(min_beta_21 ,max_beta_21 ,q_beta)’;

26 %Grid , column vector of "q_beta" feasible reports for firm 2.

27 grid_p1=linspace(min_p1 ,max_p1 ,q_p1);

28 %Grid of "q_1" feasible prices for the first period.

29 dif =1000;

30 %Initial diference for firms optimization problem.

31

32 for j=1: q_p1

33 p1=grid_p1(j)

34
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35 while dif >tolerance

36

37 % PROBLEM OF FIRM 1 IN PERIOD ONE

38 %This part solves the maximization of total profits of firm 1 (profit_11).

39 %The main idea is to find which beta_11 , that belongs to its grid ,

40 %profit_11 is maximized , given a specific value for beta_21.

41 %That is, for each value of beta_21 of its grid , we found the value of

42 %beta_11 such that total profits of firm 1 are maximized.

43

44 for i=1: q_beta;

45 beta_11=grid_beta_11; %beta_11 is equal to its grid.

46 beta_21=grid_beta_21(i); %beta_21 takes each value of its grid at a time

.

47 profit_11=p1 .^2.*( beta_11 -(( beta_11).^2./(2.* delta_1)))+(K.^2.*...

48 (((qbar -p1.*( beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21)...

49 -(2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+...

50 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)) -(((qbar -p1 .*...

51 (beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -(2.*K.*...

52 delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+(2.*K.*...

53 delta_1).^2)))./(2.*K)).*K)./(K)).^2./(2.* delta_1))));

54 [value_1 ,position_1 ]=max(profit_11);

55 %Here we maximize profits_11. "value_1" corresponds to the value of

56 %beta_11 %that maximizes profit_11. "position_1" corresponds to the

57 %row in which "value_1" is located in the grid.

58 BR_firm1(i,:)=[beta_21 ,grid_beta_11(position_1)];

59 %Best response function of firm 1 given beta_21: beta_11(beta_21).

60 %Two column vector. First column are reports given by firm 2 and

61 %the second colum is the best report of firm 1 to each beta_21.

62 beta11op(i,1)=grid_beta_11(position_1);

63 %Optimal reports of beta_11 given beta_21.

64 end

65

66 %PROBLEM OF FIRM 2 IN PERIOD ONE

67 %This part solves the maximization of total profits of firm 2 (profit_21).

68 %The main idea is to find which beta_21 , that belongs to its grid ,

69 %profit_21 is maximized , given a specific value for beta_11.
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70 %The difference with the problem of firm 1 solved above is that in

71 %this case , we take optimal reports of firm 1 in the first period as their

72 %initial values , intead of using the grid constructed at the begining.

73

74 for i=1: q_beta;

75 beta_11=beta11op(i);

76 %beta_11 takes each optimal value calculated in the previous

77 %problem. The intuition of this is that instead of starting with

78 %initial values , we take the optimal reports just calculated as

79 %firm 2 anticipates the best response of firm 1 in its problem.

80 beta_21=grid_beta_21;

81 %beta_21 is equal to its grid.

82 profit_21=p1 .^2.*( beta_21 -(( beta_21).^2./(2.* delta_2)))+...

83 (K.^2.*((( qbar -p1.*( beta_11+beta_21) -((qbar -p1.*...

84 (beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...

85 (2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+...

86 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)).*K)./(K))...

87 -(((qbar -p1.*( beta_11+beta_21) -((qbar -p1 .*...

88 (beta_11+beta_21) -((qbar -p1.*( beta_11+beta_21) -...

89 (2.*K.* delta_1)+(sqrt((qbar -p1.*( beta_11+beta_21)).^2+...

90 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)).*K)./(K)).^2./...

91 (2.* delta_2))));

92 [value_2 ,position_2] = max(profit_21);

93 %Here we maximize profits_21. "value_2" corresponds to the value

94 %of beta_21 that maximizes profit_21. "position_2" corresponds to

95 %the row in which "value_2" is located in the grid.

96 BR_firm2(i,:)=[beta_11 ,grid_beta_21(position_2)];

97 %Best response function of firm 2 given beta_11: beta_21(beta_11).

98 beta21op(i,1)=grid_beta_21(position_2);

99 %Optimal reports of beta_21 , given beta_11.

100 end

101 %Here we define the difference between the optimal reports (beta_11op ,

102 %beta_21op) with their respectives initial grids. This are two column

103 %vectors of 1000 rows and one column. Then , we take the maximal value of

104 %the vetor of differences (for each firm) and equate that the maximum of

105 %those two to differences with "dif", so that the algorithm iterates until
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106 %"dif" is below "tolerance"

107 dif1=max(abs(beta11op -grid_beta_11));

108 dif2=max(abs(beta21op -grid_beta_21));

109 dif=max(dif1 ,dif2)

110 %This step is crucial: we rename each firm optimum with their respective

111 %initial grids for them to update in each round of the loop.

112 grid_beta_11=beta11op;

113 grid_beta_21=beta21op;

114 end

115

116 %%

117 %Here we identify the domain and the range of each firm ’s best response

118 %function derived previously , defining variables for each one of those.

119 %In other words , we define variables for each column of the best response

120 %functions.

121 b_21=BR_firm1 (:,1);

122 b_11_optimum=BR_firm1 (:,2);

123 b_11=BR_firm2 (:,1);

124 b_21_optimum=BR_firm2 (:,2);

125 %Here we identify the point were the two best response functions

126 %intersect. We have beta_11 optimum for a given beta_22 , and

127 %we also have a beta_21 optimum for a given beta_11 (these are 2

128 %best responses functions). To find the intersection , we look the

129 %position where the domain (input) of BR_firm1 is equal to the range

130 %(output) of BR_firm2. We find the value and position where the two

131 %beta_21 are equal , which is %the point where the best reponse of firm 1

132 %given a report of firm 2, is at %the same time the best response of

133 %firm 2 given a report of firm 1 (nash %equilibrium).

134 dif_beta_21 =(abs(b_21 -b_21_optimum));

135 %This is a column vector of the difference of the two beta_21.

136 [value_3 ,position_3 ]=min(dif_beta_21);

137 %We find the minimum of the column vector.

138 beta_21_STAR=b_21_optimum(position_3 ,1)

139 beta_11_STAR=b_11(position_3 ,1)

140 %These are the values for which the best response functions of each firm

141 %coincide.
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142

143 %Now that we find the optimal reports of each firm for period one , we

144 %procede to solve the auctioneers minimization problem.

145 auctioneer_exp(j,1)=p1.*( beta_11_STAR+beta_21_STAR).*(p1 -K)+(K.*qbar);

146 %Function of expenses of the auctioneer that depends on the optimal

147 %reports of period one.

148 end

149 %%

150 %Here we minimize the expenses function of the auctioneer.

151 [value_4 ,position_4 ]=min(auctioneer_exp);

152 p1_STAR=grid_p1(position_4);

153 %This is the optimal for the auctioneer to minimize its expenses.

154

155 %Figures

156 %Best Response figure

157 %We have to be very carefully on how we define the "x" and "y" variables

158 %in order to grapg the two best responses functions in the same axis.

159 %We design it for beta_21 to be in the "y" axis and "beta_11" in the "x"

160 %axis.

161 figure (1)

162 plot(b_11_optimum ,b_21 ,b_11 ,b_21_optimum)

163 hold on

164 plot(b_11_optimum (369),b_21 (369),b_11 (369),b_21_optimum (369),’r*’ ,...

165 ’MarkerEdgeColor ’,’black’,’MarkerFaceColor ’,’black’)

166 ylabel(’\beta_ {21}(\ beta_ {11})’)

167 xlabel(’\beta_ {11}(\ beta_ {21})’)

168 title(’Best Responses ’)

169 legend(’\beta_ {11}(\ beta_ {21})’,’\beta_ {21}(\ beta_ {11})’)

170 hold off

171 %Auctioneer minimization figure

172 figure (2)

173 plot(grid_p1 ,auctioneer_exp)

174 hold on

175 plot(grid_p1 (205),auctioneer_exp (205),’r*’ ,...

176 ’MarkerEdgeColor ’,’black’,’MarkerFaceColor ’,’black’)

177 ylabel(’Auctioneer ’’s total expenditure ’)
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178 xlabel(’P_{1}’)

179 title(’Auctioneer ’’s problem ’)

180 %%

181 beta_12_star =(qbar -p1_STAR .*( beta_11_STAR+beta_21_STAR) -((qbar -...

182 p1_STAR .*( beta_11_STAR+beta_21_STAR) -(2.*K.* delta_1)+...

183 (sqrt((qbar -p1_STAR .*( beta_11_STAR+beta_21_STAR)).^2+...

184 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K);

185 beta_22_star =(qbar -p1_STAR .*( beta_11_STAR+beta_21_STAR) -((qbar -...

186 p1_STAR .*( beta_11_STAR+beta_21_STAR) -((qbar -p1_STAR .*...

187 (beta_11_STAR+beta_21_STAR) -(2.*K.* delta_1)+(sqrt ...

188 ((qbar -p1_STAR .*( beta_11_STAR+beta_21_STAR)).^2+...

189 (2.*K.* delta_1).^2)))./(2.*K)).*K)./(K)).*K)./(K);
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