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Abstract

The main goal of this paper is to establish whether the Smog-Check system improves

local air quality. Using panel data from 2008-2016 for eleven air pollution monitors and a

comprehensive dataset of Smog-Checks, I find that an increase in the number of rejections

lowers the levels of a small group of pollutants, even after controlling for confounding variables.

The main result is that an increase of one standard deviation in the number of rejections

decreases [CO], [NO2], [PM10], and [PM2.5] by 5,1%, 6%, 1,4%, and 5,8% of a standard

deviation respectively. This is about 16.7% of the effect of what establishing an environmental

pre-emergency can accomplish. These results remain significant after changing the empirical

specification, and several falsification exercises are conducted to strengthen the identification

strategy. Additionally, I explore the potential heterogeneity underlying these results along

the station-quality dimension using metrics derived from California’s STAR program, which

compares the expected rejection rate versus the realization of this variable, after controlling for

a comprehensive set of observable characteristics. I find that rejecting a car by a low-quality

station has a negligible impact on air pollution while high-quality stations are the main driver

behind the aforementioned results.

1Thesis written as a Master student at Department of Economics, Pontificia Universidad Católica de
Chile. I would like to thank my thesis advisors Constanza Fosco, Tomas Rau, and Gert Wagner for their
continuous guidance and comments. I am also very grateful to professors Juan-Pablo Montero and Francisco
Gallego for their suggestions and support during my thesis. In addition, I would like to thank Sebastián
Poblete and Bernardo de Moura for their support, ideas, discussion, and proofreading. This project is
supported by FONDECYT No.1161802 of professor Juan-Pablo Montero. Any errors or omissions are my
own responsibility. Comments at: jdsalas@uc.cl

For Josette, whom does nothing but give love.
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1 Introduction

There is a long-standing debate about the most cost-effective and efficient policies to curb air

pollution. Automobile emissions are an important source of pollution, and this is particularly

relevant in developing countries where emissions standards tend to be less stringent. Specifi-

cally, for Chile’s capital city Santiago cars and mobile sources are responsible for about 94%

of Carbon Monoxide (CO) Emissions, which is one of the main components of air pollution

(Gallego et al., 2013). However, private cars not only contribute to local air pollution by

emitting CO, but also by emitting Nitric Oxides (NOx), Particulate Matter of different sizes

(PM2.5 and PM10), and other organic volatile compounds. There is a wide consensus among

the economic and medical literature that the health effects of air contamination are sizable

(see below). The main instrument used to enforce emission standards for vehicles around

the globe are compulsory Smog-Checks. However, there is little empirical evidence about

whether this program is being effective at improving local air quality.

The link between Smog-Checks and local air pollution could be imperceptible due to several

reasons.The main objective of the Smog-Check system is to detect cars that are not com-

plying with emission standards. However, this ability has been questioned in the literature

because there seems to exist a wide gap between on-the-road emissions and levels measured

by official tests at Smog-Checks plants. This gap could be explained, as in (Wenzel et al.,

2004), owing to the volatile nature of car emissions or, by the short-lived nature of the re-

pairs made to approve the Smog-Checks (Glazer et al., 1993, 1995). Additional concerns

were raised by Oliva (2015), who found that in Mexico around 10% of old-car owners paid

bribes in order to circumvent the regulations. All of these concerns could translate into a

negligible effect of the Smog-Check program in terms of local air pollution.

In this work, I will answer if the Smog-Check program is fulfilling its objective of enforcing

car emission standards and whether this is being translated into lower levels of air pollu-

tion. This will be done by assessing whether the inspections that ended in a rejection are

diminishing the concentration of local air pollution after controlling for several sources of
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possible confounding factors. From a more general perspective, Im am explaining variations

in the current levels of air pollution, after taking into account several plausible sources of

confounding factors, with variations in the total number of rejections conducted on days

previous to a specified date. Additionally, I will classify Smog-Checks plants according to

the ratio between their expected and realized rejection rates to obtain a station-quality met-

ric like has been recently implemented in California under the STAR program (Bureau of

Automotive Repairs, 2012). This is done to understand whether there is heterogeneity in

our results along this dimension.

This work uses data from the air monitoring network maintained by the Chilean Environment

Office (SINCA) and data from the Smog-Check plants coming from a centralized network

that the Chilean Transport and Telecommunication Office control. The main results suggest

that there is a small, but significant effect of rejecting an additional high-emitting car in

terms of local air pollution. With this dataset, I also classified Smog-Checks stations accord-

ing to a quality metric called Similar Vehicle Failure Rate (SVFR) derived from California’s

STAR program (Bureau of Automotive Repairs, 2012). This metric compares the expected

failure rate at a determined station to the realization of that variable, after controlling for a

comprehensive set of observable characteristics. A station will be classified as low-quality if

its SVFR is below a threshold of 0.75, which means that is rejecting a 25% less than what

it would be expected based on the observable characteristics of the car conducting their

inspection at that specific station. When I explore the potential heterogeneity along this

dimension I find that rejections from low-quality stations have an imperceptible effect, while

high-quality stations are the main driver behind our results.

To the best of my knowledge, there is only one article linking the Smog-Check program to

local air pollution and classifying plants according to their “quality” (Sanders and Sandler,

2017). However, there are several reasons to suspect why a different context could be very

important. First, in developing countries, enforcement, car-manufacturers controls, and pol-

lution standards might be less strict. Second, an older car fleet could exacerbate some of

the aforementioned problems. Finally, I am able to use a station-quality metric which is
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observable and viable to implement from the regulator’s perspective.

Several papers have documented the negative effects of environmental pollution due to sev-

eral causes on outcomes such as, infant mortality (Kampa and Castanas, 2008; Chay and

Greenstone, 2003; Knittel et al., 2011; Currie and Neidell, 2005), losses of worker produc-

tivity (Hanna and Oliva, 2015; Graff-Zivin and Neidell, 2012; Chang et al., 2016b,a), School

absence and cognitive performance in general (Currie et al., 2009), and so on. Most of this

literature takes advantage of sources of external variation of air pollution and other sources

of plausibly exogenous variation in air pollution to understand how they affect this outcomes.

However, there are very heterogeneous results on the efficacy of current policies against air

pollution (Harrington et al., 2000; Wolff, 2013; Davis, 2008; Gallego et al., 2013). In this

context, this paper contributes to the literature by assessing the efficacy of Smog-Checks in

terms of local air pollution.

The article proceeds as follows. In the next section, I describe our data and discuss some

relevant features for the present work. Section 3 discuss the regulatory framework that car-

owners face and how this is related to the main empirical estimations. Section 4 the main

equations to be estimated and the identification assumptions are discussed. This section is

divided into two parts to explain how to asses the impacts of an additional rejection and

how to explore the potential sources of Heterogeneity in these results. Section 5 discusses

the main results of this estimations. Finally, section 6 conclude and shed some lights on

policy lessons that could be derived from the empirical exercises.

2 Data

The present work uses data from several sources. First, I have a comprehensive data set of

all the Smog-Checks conducted between 2008-2016 in Chile. The information includes data

about each car such as, make, model, year of fabrication, odometer readings2, and even plate

number. From this panel, I get the main right-hand-side variable which is the total number

2While this data is supposedly reported it is very noisy and is not available for every year.
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of rejections at a specific plant. Notice that with this dataset I know specifically the cause

behind the rejection (i.e. I can observe whether the rejection comes from elevated tailpipe

emissions or from another mechanical malfunctioning). The other variables available will

be used to construct the quality metrics as specified by California’s Bureau of Automotive

Repair manual (Bureau of Automotive Repairs, 2012).

Second, the main outcomes come from the air-quality monitoring network maintained by

the Chilean Environmental Office (Sistema de Información de la Calidad del Aire - SINCA).

This network consists of 11 monitors throughout the Metropolitan Region and is represen-

tative of different socio-economic sectors. They provide hourly information on the levels of

several pollutants. The focus of this paper is on Carbon Monoxide due to its close link to

car-use, but I report coefficients for PM2.5, PM10, NO2 and O3 which are available from the

same source. Additionally, this dataset has information on hourly temperature, humidity,

wind speed, and wind direction which are key controls for the main empirical specification.

With these data-sets I construct a panel from 2008-2016 at the geographic-unit level with

the daily concentrations of different air pollutants, the total number of rejections and by

levels of station-quality, and all the weather conditions relevant to air pollution. However, to

construct this panel is necessary to match Smog-Check stations to specific Monitors. This

is done by considering all plants within a 5-kilometer radius of the monitor to be part of

the same “Geographic-Unit”3. The datasets consists of 11 geographic-units paired with 35

Smog-Check stations, so in average there is 3.2 stations per Geographic-Unit. I then explore

changes in this criteria to understand the spatial nature of our results.

Summary statistics for the number of inspections-rejections conducted daily at each geo-

graphic unit are available in Table 1 for each year. At first sight, one can notice that the

number of inspections is not monotonically increasing over time. The series reached its peak

3Geographic-Unit is our observational level, and consists of an air-quality monitor with all the Smog-Check
plants that are within a 5-kilometer radius. The radius is constructed around the air-quality monitors. There
were two stations in which there was overlap of the geographic-units. I assigned those stations to the closest
monitor. Additionally, I re-estimated the same empirical specifications by dropping this stations from our
sample and all results remain unchanged.
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in 2013. This might be due to the fact that cars from 0 up to 2 years of age are exempt from

mandatory inspections and that the car fleet has been getting younger in time (Barahona

et al., 2017). In Table 2, the number of observations coming from the Smog-Check database

is presented. Here, it is important to highlight that the number of total inspections has

been increasing in years which is consistent with data reported by the National Institute of

Statistics (Instituto Nacional de Estad́ısticas) and a growing vehicular fleet. However, these

numbers do not match the total amount of cars because I am reporting the total number

of inspections which is larger because there are cars conducting more than one inspection

and several cars conducting multiple inspections in the same year. I discuss the balance in

term of the number of cars with the number of observations in our dataset in the following

section. Table 3 shows the average daily reading of several pollutants for every year. In

figure 1, I plot the daily average concentration for [PM10], [CO], and [O3]. The seasonality

of this variables responds mainly to weather conditions. It is important to highlight that the

seasonality for [O3] is the opposite as with [CO] and [PM10]. This is due to the fact that

the formation of ground-level Ozone depends on the presence of sunlight. For [CO] one can

see that there is a downward trend in time, which is consistent with what Bharadwaj et al.

(2017) describe for a previous period. [PM2.5], and [NO2] are not plotted here due to their

similarity with [CO], and [PM10].

Finally, I want to refer to figure 2. On panel a), I show how car emissions, specifically for

CO, behave according to the age of a specific car. A “group” is defined as cars that have

between 0-4 years of age for group 1, 5-8 years of age for group 2, and so on. Cars with 20 o

more years of age are pooled in group 5. The different lines of this plot show the average CO

emissions for each group after controlling for fixed-effects at various levels. For example, the

blue line labeled “Plate No.” plots the same relationship described, but after controlling for

fixed-effects at plate number. This is extremely, demanding since I am taking into account

everything that is common for a given car. If the car has not changed owner I am even

controlling for the level of maintenance that a given owner puts in his car or how carefully

he drives, etc. The main conclusion of this graph is that polluting cars come mainly for a

specific group of the total vehicular fleet (i.e. from groups 4-5). Panel b) of the same figure,
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plots the variance of CO emissions by doing the same exercise as explained before. With

this information, I know that not only CO emissions grow almost exponentially with the age

of cars, but that they become more heterogeneous along this dimension. This two facts are

related at the heart of the empirical strategy that I will develop on section 4.

3 Smog-Check Regulation in Chile

The main objective of the vehicle inspection program is to determine whether the vehicles

have the technical requirements to guarantee that their circulation is safe and is complying

with environmental protection laws. To this end, the law requires that private car owners

conduct a comprehensive examination at least once a year. There are some exceptions. For

example, new cars have a two-year period in which they are not required to be inspected.

A car that has approved the examination gets a visible sticker. This certification is needed

in order to obtain a valid transit permit which is to be renewed in March of every year.

Driving without an approved vehicle inspection can result in a fine of 1 to 1.5 UTM or about

77 to 115 USD approximately. The fine for driving without a transit permit goes from 1.5

to 3 UTM (115 to 230 USD approximately). Additionally, if the driver does not have a

valid transit permit, the car is immediately seized and taken to a municipal parking lot. To

retrieve the car, the owner has to pay the fine, obtain a valid transit permit, and pay for the

time the car was in the parking lot.

Car owners that are meant to conduct their vehicle inspection in the current year are subject

to a pre-determined monthly schedule in which the past certificate expires. This schedule

depends solely on the last number of the license plate. December and March are the only

two months in which no license plate will have their certificate expiring. However, many

people go to inspect their vehicles in this months for two reasons: to obtain a transit permit,

and to get their vehicle inspected before driving on the highway on vacation months. This

is evident in our panel data set since there are inspections and rejections every working day.
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One concern that can arise with the use of this data is that, since it is “voluntarily” to

obtain a valid transit permit and to have all the paperwork up to date, it may be possible

that few car owners actually get their vehicles inspected. This would result in a dataset

with fewer inspections than the total amount of private cars in the city. In order to check

that there is some kind of balance in the number of cars and inspections conducted, I use

data from the National Statistics Bureau (INE) (Subdirección Técnica, INE, 2016). These

reports, show the number of private-owned cars by region. For example in the year 2009,

there were 1,189,014 privately-owned cars in the metropolitan region. In our data, for that

year I have 965,112 cars. However, the regulation does not require cars that are 1 and 2

years old to conduct an official inspection. With data from 2010, I know that the amount

of cars manufactured in 2008 and 2007 is 230,211. So, in total there were 1,195,323 cars

conducting their inspections in the Metropolitan Region. The small difference may be due

to the fact that some privately-owned cars might be classified differently in the two sources

of data and/or people getting their inspections outside of the Metropolitan Region, etc. This

kind of balance is present in all the years that cover our dataset4.

The main focus of this work is on smog-checks, which correspond to a specific inspection

station or stage inside the vehicle inspection program. There are many steps in the inspec-

tion process. The process starts by checking visual aspects of the car, such as the plate

number visibility, the seat-belts are working properly, windows and rearview mirrors are in

good condition, etc. Next, they inspect specific parameters for all the lights of the car, and

then they proceed to check the wheel alignment, breaks, suspension system, and finally they

proceed to the emissions inspection. The first part of this stage of the process consists of

a visual examination of car emissions. At this level, if cars emissions are visible, the car

is immediately rejected and has to conduct a reinspection in the near future. In the next

step, cars are connected through the tailpipe to a machine which detects levels for different

pollutants. The readings of this machine are directly transmitted to the Chilean Telecom-

4From looking at table 2, for 2009 the number of total inspections conducted is 1,839,362. This number
includes all cars that conducted inspections at a certified station. If I adjust this for the total rejection rate
for this year I have an estimated of 1,164,624 cars conducting their inspection at a certified station which
closely matches the number reported by INE.
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munications and Transport Office. If any of the pollutants registered is above the regulation

threshold, the car is rejected and has to conduct a reinspection (Ministerio de Transportes y

Telecomunicaciones, 2015). Owners of a rejected car have an average term of two weeks to

conduct the reinspection at a reduced value. However, this term depends on the seriousness

of the malfunction.

4 Empirical Strategy

4.1 Impact of Rejections

In light of the context described in the previous section, what is relevant for our purposes

is the following hypothetical process. First, car owners have to conduct their inspection

on the month assigned to them based on their plate number. Our empirical specification

is partially based on the fact that the timing of this process is quasi-random in regard to

local air pollution. Next, those cars that comply with the emission norms are given the

approval certificate. However, those cars whose emissions are above the limits are rejected.

The following part of the process is critical because what happens at this stage is crucial

to our results. The owner of a car that has been rejected has to perform a reinspection

within the due date if he wants to keep driving his car. However, he can still drive his car

without the possession of a valid certificate, but he will be at risk to be fined according to

the amounts discussed in the previous paragraphs. To obtain a valid certificate on the next

reinspection there are many possibilities. Among them are: repairing the car, trying to cheat

the system (paying bribes and/or performing short-lived modifications to the car), or simply

trying to get a valid certificate without conducting any further repairs. If the smog-checks

system is working properly, only the first option would allow a car-owner to obtain a valid

passing certificate. If there are flaws to the system, it would be possible to pay a bribe and

get the certificate, and/or the machines-technicians would not be able to detect short-lived

modifications or cars without repairs when inspecting the car the next time. If the latter is

true, then there would be no impacts of the smog-check program on the level of air pollution.

12



M.A. Thesis José D. Salas

In the section “Station-Quality Heterogeneity” I will explain how these potential differences

translate into different levels of quality according to our measures. As mentioned before, the

only “tool” available to curtail tailpipe emissions is to remove high-emitting vehicles from

the street (by rejecting them) and induce a subsequent maintenance or repair of these cars5.

This process is at the heart of the empirical specification I would employ in the next sections.

From a more general perspective, Im am trying to explain variations in the current level of

air pollution, after taking into account several plausible sources of confounding factors, with

variations in the total number of rejections conducted on days previous to a specified date.

Obviously, the levels of air pollution differ from day to day due to several factors. However,

the number of rejections at Smog-Checks should affect the composition of the vehicular fleet

regarding their levels of emissions on a daily basis. The latter is due to the fact that the

system is taking high-polluting cars out from the streets and forcing them to repair their

cars in order to obtain a valid certification. So, if the number of inspections/rejections varies

on a daily basis, and local air pollution also varies on a daily basis I can exploit this quasi-

exogenous source of variation of rejections to understand whether it is affecting the level of

air contamination.

The main equation, following on Sanders and Sandler (2017), that relates the rejection of a

car by the Smog-Check program with local air pollution is:

pt,m = β

[
K∑

k=0

r(t−k),m

]
+ δXt,m + φm + ξt + εt,m. (1)

where pt,c denotes the concentration of pollutant p at date t on geographic-unit m. Our main

focus is on CO since it is directly attributable to cars, however, I have data from several

other pollutants, such as Particulate Matter and Nitrogen Dioxide. Our main independent

variable is
∑K

k=0 r(t−k),m, where r(t−k),m are rejections conducted at date t−k the geographic

area m. So, the main variable is the total number of reinspections conducted between t and

5This is what hypothetical owners of rejected cars would have to do in order to pass in a subsequent
inspection.
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K days before date t at a specific geographic region6. The parameter of interest is β which

captures the effect of an additional reinspection between t and K days before date t in the

geographic-unit m. Xt,m corresponds to a vector of daily weather covariates for each monitor.

φm and ξt are geographic-unit and day fixed-effects to account for everything that is common

to all units in a specific date, and all things common to a specific unit in all dates respectively.

This empirical strategy exploits the fact that vehicle inspections and rejections are indepen-

dent to local air pollution, conditional on certain covariates. As mentioned in the previous

paragraph, I control for several confounding factors. Additionally, a key characteristic of the

regulation is that the month in which people have to complete their certification is essen-

tially random. However, for the period that our dataset covers, around 25% of inspections

are conducted at a date that is later than the specified schedule. I employ time fixed-effects

and control for all shocks that are common through geographic regions at a specific date.

Weather covariates are key to avoid confounding factors since local air pollution responds

directly to this variables. I need to highlight the fact that rt,m is a proxy for removing a

high-emitting-car from the streets at time t in the geographic-unit m. If cars are not being

removed (i.e. people are driving without their legal certification) and/or they are getting

their inspections from places that they are not driving frequently, the measurement error

will bias our estimates toward zero and I will not be able to find any statistically signifi-

cant results7. Geographic-unit fixed-effects control for all characteristics of these geographic

units that do not vary with time. Standard errors will be calculated by clustering at this level.

The main concern one has to be aware of when using this strategy is that rt,m cannot be

correlated with εt,m. This could be problematic if there are other variables, not included

in this equation, that explain pt,m and are correlated with rt,m. For instance, one of the

most relevant forms of endogeneity in this context could be Reverse Causality. One example

of a hypothetic situation where this could be relevant is if the authorities put pressure on

inspection plants specifically when pollution is high. In Chile, there are several episodes

6The main results are conducted by setting K to 1 or 7 days (i.e. from one day to one week) as mentioned
at the footnote of each table.

7See proof in 7.2
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of “Environmental (Pre) Emergencies” each year. It could be the case that the Chilean

Environmental Office and/or the Transport and Telecommunication Office contact inspec-

tions plant administrators to ask them to be overly restrictive on the days surrounding these

episodes. One way out of this kind of problems is that the panel structure of our data allows

us to control for everything that is common to all plants at each relevant point in time. So, if

this kind of pressure is put on all plants, these would be taken into account with day-specific

fixed-effects. However, I will conduct several robustness exercises to confirm that I am iden-

tifying the causal effect of an additional rejection correctly. For example, a key and simple

robustness exercise is to conduct a falsification or placebo-test in which I estimate the main

specification, but using a lag of the dependent variable (i.e. try to explain past pollution

with current rejections). If there are hidden trends that drive our results this would be

reflected in the finding of significant effects in this kind of exercise. If there are no effects it

means that there are not trends or that these trends are extremely short-lived. For instance,

if one is worried that shocks that increase the mass of vehicles in the city are behind our

results, then this kind of “trends” would be reflected in finding spurious correlations. The

same logic stands if one thinks of specific times of the year in which the authorities are more

concerned with the leniency of inspection plants standards. Additionally, I can estimate

the main empirical specification, but excluding the critical winter months in terms of high

levels of air pollution to discard this plausible sources of endogeneity (i.e. reverse causality

as mentioned before).

One potential source of confounding factors is related to the size of the vehicular fleet that

transits nearby air pollution monitors. It could be the case that all of our results can be

explained by simply reducing the total number of cars circulating in the surrounding areas.

Since I do not have data on transit or vehicular fleet for each geographic-unit at daily fre-

quencies I deal with this concern by conducting an additional falsification exercise. If the

main mechanism behind our results is to reduce the number of cars, I can estimate the same

equation, but using rejections by causes other than Smog-Checks. I discuss these results at

the end of section 5.1.
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4.2 Station-Quality Heterogeneity

Even though there are several factors affecting whether a specific vehicle passes at the smog

check, one key policy question is whether one can effectively classify stations according to

their quality. In recent year, the state of California approved a new legislation that allows

plants that are above certain quality-threshold to conduct inspections to high-polluting ve-

hicles. For our purposes, it is interesting to understand if the effects that I am trying to

estimate are affected by what I will label as “station-quality”. Before describing the specific

detail of this metric, it is important to consider what quality means and how it is relevant

in this context.

From my perspective what I can effectively observe is that the “quality” level of each station

is the result of an economic equilibrium. On one side of this market, there are stations.

There is some evidence that is consistent with inspection stations involved directly in cheat-

ing, and evidence that shows how plants change their levels of leniency to environmental

standards to attract more customers (Oliva, 2015; Hubbard, 1998). On the other side, there

are customers trying to get their vehicles approved. I have informal and anecdotical evidence

that there is a wide number of common practices to pass the Smog-Check without taking

measures to improve car emissions, such as forcefully accelerating the vehicle for about 15

minutes before the inspection, and/or washing the tailpipe with water and soap. What I

expect from the “quality” metric is that it should be able to capture whether a specific plant

is being involved (directly or indirectly) in this kind of practices, and this should also be

reflected in the heterogeneity of the results along this dimension.

To translate the Similar Vehicle Failure Rate (SVFR), one of the STAR-quality metrics, I

follow Sanders and Sandler (2017). It is important to remember that this metric is trying to

capture by how much each station is deviating from their expected failure rates compared

to what is seen in the Smog-Check system as a whole. First, I need to take into account

that car-owners can conduct several inspections each year. I will denote vehicle type, that

is make-model, with k. I will index by n ∈ {1, . . . , N} the number of reinspections for each
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car within a year. For the following calculations, I only consider the first inspection within

each cycle for each car, and each cycle is considered to last one year. For example, if a car

fails its first inspection and passes the second N = 2. The group of all cars conducting their

n-th inspection at a station s within a year is denoted by ζs(y, n), where y stands for the

year. I will denote by l the time level of aggregation of the data for this exercise8. With all

these ingredients, the expected rejection rate of a station is:

Ξ(ζs(y, n), y, n) =
1

ζs(y, n)

∑

i∈ζs(y,n)
P(faili,y,n = 1|ki, l, Xiky). (2)

That is to say, that the expected rejection rate at a station s is the average of all the

individual predicted probabilities of failure for each car, after considering all the available

observable characteristics. Notice also that I am only considering the first inspection for

every car in the construction of the predicted values, since there could be more noise in this

values on the subsequent inspections. In this context, faili,y,n is an indicator function that

equals to one when vehicle i ∈ ζs(y, n) fails its n-th inspection in year y. Xiky is a vector of

car characteristics, such as age, and make-model. I express P(faili,y,n = 1|ki, l, Xiky) in the

following form:

P(faili,y,1 = 1) = αk + ηl + βXiky + ηk. (3)

where, αk controls for all common things of models that do not change in time, and ηl

controls for things common to all models during period l. It is important to highlight the

fact that the previous linear probability model only calculates the probability of failure of

different models using the initial inspection data (i.e. n = 1).

The SVFR for a specific station s during the period of time l can be written in the following

form:

SV FRsl =

1
ζs(y,1)

∑
i∈ζs(y,1) faili,y,1

Ξ(ζs(y, 1), y, 1)
. (4)

The interpretation of this metric is how much more(less) strict is a specific station, when

8The main results of this exercise were done by setting l to one month.
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compared to the average station within the system, in rejecting cars of similar observable

characteristics. The threshold specified by the STAR program is 0.75. This means that a

station rejecting 25% less cars of similar characteristics than what it is to be expected will be

qualified as a low-quality station 9. With this information, I aggregate the total number of

rejections conducted at “high” (“low”)-quality stations for each geographic-unit. Estimating

this specification will shed information on how does the effects of conducting the inspection

at a station with different levels of “quality” compares in terms of local air pollution. In

concrete terms the main equation to be estimated at this section is the following:

pt,m = βH




K∑

k=0

SH
m∑

sH=1

rH(t−k),s,m


 + βL




K∑

k=0

SL
m∑

sL=1

rL(t−k),s,m


 + δXt,m + φm + ξt + εt,m. (5)

where βH captures the effect of an additional reinspection at a high-quality station between

t and K days before date t in the geographic-unit m and βL captures the analogous, but for

low-quality stations. Notice that SHm (and SLm) depends on m because the total number of

high(low) quality stations at each geographic-unit might differ. Intuitively, one can expect

the coefficient βH to be negative and statistically significant. This potential heterogeneity

is based on the fact that a car being rejected at a high-quality station is probably a car that

should be taken out from circulation based on its level of emissions. However, a car rejected

in a low-quality station might not be a car that should be taken out from circulation, or at

least the metric is capturing that this stations cannot effectively recognize which cars are

more(less) polluting. In this sense, low-quality stations are not being effective at changing

the composition of the car fleet in terms of emissions as it is expected and this, in turn, should

be captured as βL being close to zero and noisily estimated. Notice that the identification

strategy for estimating this equation has the same assumptions as our main specification.

9I did the same exercise, but using rejections for causes other than Smog-Checks and the correlation
between these two metrics is about 40%.
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5 Results

5.1 Impact of Rejections

All coefficients are rescaled to represent the impact of one additional standard deviation

of rejections on the concentration of pollutants, also in terms of standard deviations. This

means that when I change rejections by one standard deviation, β represents how much of

a standard deviation the specific pollutant is affected. This standardization is done because

there are different measurement units across pollutants and for the ease of the interpre-

tation and comparison across pollutants I preferred to standardized them so they are all

comparable. Additionally, while I am estimating the impact of an additional rejection by

the Smog-Check system, this coefficients would be very small and this would make them

hard to compare between specifications and across pollutants10.

On table 4 the results from different exercises can be found, all of them with the average daily

concentration of [CO] at each monitor as the left-hand-side variable. In the first column,

results of the most simple regression of [CO]11 on the total number of rejections without

adding any controls is estimated. Notice that these two variables correlate positively, possi-

bly this is due to the fact that both series reflect the growth of the vehicular fleet across the

time-span of our panel. However, as one can see in column number 2, as soon as I control for

geographic-unit fixed-effects the sign changes. This means that, after controlling for every-

thing constant in time for each geographic-unit, one can see that the sign of the coefficients

turns to negative. Notice that in this specification I am only explaining the residual variation

that reinspections generate on [CO] within each geographic-unit. When one looks at column

3, after adding weather controls the coefficient increases and I gain statistical significance.

This is crucial since it is known that air pollution responds directly to several weather con-

ditions. For example, an increase in wind speed will move pollution usually to the coast,

therefore, reducing measured air pollution by the monitors in our sample. With low temper-

10Remember that different pollutants are reported with different measurement units.
11Recall that I am using daily averages for each pollutant at the Geographic-Unit level.
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ature, the cloud of gas contracts and therefore augments its relative concentrations. Also, I

know that local air pollution is directly affected by humidity and the direction of the wind.

All of this facts explain why after controlling for weather covariates one can see an increase

the statistical significance. On the last column, I add day fixed-effects that capture all the

variation that is common across plants for a specific day. For example, if there are forest

fires and/or if police increase their monitoring, and so on, this would be captured by these

fixed-effects. Notice that the magnitude of the coefficient, these remains fairly unchanged

after adding geographic-unit fixed effects, but I am only improving the statistical significance

of it. The coefficient in the last column, which is our preferred specification, means that an

increase in one standard deviation in the number of rejections within a specific geographic

unit decreases the concentrations of Carbon Monoxide by around 4.8% of a standard devia-

tion.

In table 5 I show the results of the same exercises as described above, but with [NO2] as

our main left-hand-side variable. The results are more or less unchanged in terms of the

evolution of the sign and magnitude of the coefficients. However, I am not able to find any

statistically significant effects for this pollutant. I do not find this to be problematic since

this is the most demanding specification, because I am letting the effects to accumulate for

only one day. In addition, it is important to highlight that [CO] is our main dependent

variable since there is evidence that links its pollution directly to car emissions, while for

[NO2] and the other studied pollutants this is not the case. The coefficient in column 4,

means that an increase of a one standard deviation in the number of rejections for a specific

monitor translates into a decrease of about 3.4% of a standard deviation in the concentra-

tion of Nitrous Dioxide. From now on, all estimations are conducted with our full empirical

specification except when explicitly mentioned.

Table 6 shows the results of our preferred specification for all pollutants available in our

database. The first two columns show the impact of rejections on particulate matter of

different sizes. While car emissions are certainly one of the main contributors to this con-

taminants by emitting Volatile Organic Compounds, there are many other sources, such as
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smoke and resuspension of organic matter. However, it is highly reassuring that I find sta-

tistically significant and economically relevant estimates for these two pollutants ([PM10],

and [PM ]2.5) since they are one of the most problematic sources of smog (Enviromental

Protection Agency, U.S., 2006). While for PM2.5, the smallest measured size of particulate

matter our coefficient is statistically significant and about 5% of a standard deviation for

PM10 is significant at 10% and about less than 1% of a standard deviation. This reflects the

fact that probably the production function for PM2.5 has cars emissions as one of the main

sources and that is not the case for PM10. Also, it is important to notice that PM10 might

be subject to potential sources of confounding variables that I am not able to control for such

as a barbecues near the monitors or increased vehicular flow. This is particularly important

with these two pollutants due to the fact that the size of this particulate matter is related

to ground particles that are resuspended and may be harder to link to car emissions. Most

notably, the coefficient for O3 is around 1% of a standard deviation, positive and not even

nearly statistically significant. This might be due to the fact that the production function

for O3 is highly complex and its formation probably takes more time to form since it depends

on the concentration of Nitric Oxides [NOx], the presence of sunlight, etc.

When I move to a less demanding specification in which I allow the effects of rejections to

take up to one week to translate into local air pollution. The results presented in table 7 are

for this specification, but the details of timing seem not to be extremely important (from 7 to

5 or 8 days the results practically remain unchanged). Now one can see that the magnitudes

for all pollutants are a little bit higher, except for [O3]. Notice that I now find statistically

significant results for PM10 and for NO2 the effects remain marginally significant which is

reassuring. For [CO] the results are virtually unchanged.

In Table 8, I conduct the same exercise as described in the previous paragraph, but the level

of Geographical Aggregation correspond to the Metropolitan Region. This is done to under-

stand to what extent our results depend on the geographical level of aggregation. Remember

that for the estimation of 1 I was using a 5-kilometer radius to define our geographic-units.

However, this is arbitrary and, here I run the same specification, but collapsing our panel
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dataset into a times series in order to increase the radius of the geographic-units. It is im-

portant to highlight that, when I move to this scenario there are many things changing, for

instance, at this level of aggregation I lose the ability to control for day and geographic-unit

fixed effects. One of the upsides of this specification is that at this level I do not need to make

assumptions about whether car-owners that conduct their inspections at determined stations

do or do not circulate in the proximity of those areas. The magnitude of the coefficients

reported here is a little lower for every pollutant12, which could be a result of the move-

ment of the smog cloud, the geographical heterogeneity within the city, and that between

geographical-units variation is lost at this level of aggregation13. Calculating the impacts of

rejecting an additional car on [CO], when I move from a local context to a more aggregated

one our magnitudes drop by about 6 times. This is consistent with the fact that air quality

monitors capture only local pollution and that aggregating could hinder the relevant local

variation.

It is very important to remember, as said in section 2, that our results are driven by high-

emitting or high-polluting cars. To be more emphatic about this, I took the gas readings

reported in our database and compared the average [CO] emissions of cars that passed and

from those that were rejected at the Smog-Check. An average car that passed the inspection

has a [CO] reading of 0.155 (%v/v), while a car that was rejected has a [CO] reading of 1.45

(%v/v). This means that, on average, rejected cars emit a little more than 9 times the [CO]

of what non-rejected cars emit. Notice that the two distributions do not share anything in

common because rejected cars are always above the maximum pollution levels of the pol-

lution distribution of non-rejected cars. This is true both at 24(km/h) and at 50(km/h).

Additionally, the pollution “production function” does not take as an input average emis-

sions, but the sum of emissions. This is crucial because the aforementioned differences are

exacerbated by this fact. If I want to convert this measurements unit to (ppb) I have to

12A standard deviation for all pollutants is more or less the same than the magnitudes reported in 2.
However, a standard deviation in the number of rejections is about 74 cars, whereas before was about 25
cars.

13At this level of aggregation I have a time-series dataset and I can not control for geographic-unit fixed-
effects and/or day fixed-effects.
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multiply by a factor of 1000000014. So again, these differences become wider when I look

at the appropriate measurement units for this context. However, it is highly complex to

take these measurements and extrapolate them to local air pollution levels. The main issue

relies on the fact that all these measurement units are concentration units and are calculated

over different volumes15. However, this analysis help us to understand that what it is being

removed are extremely high-polluting cars and that in average cars that are rejected are not

rejected by small margins.

To understand the economic magnitude and significance of this estimations I will follow

Bharadwaj et al. (2017), where they estimate that exposing children while in utero to an

increase in the [CO] concentration of one standard deviation16 decreases standardized test

scores of affected children in the long run by about 6% of a standard deviation 17. The

main mechanism they explore is that increased local air pollution affects both birthweight

and gestational age negatively. These coefficients are obtained for the same city which I

analyze in this work, thus their coefficients are easier to extrapolate in this context. How-

ever, it is worth noticing that they are evaluating the long-run effects of the exposure to air

pollution18. Additionally, their sample covers from 1990 to 2005. Applying this results one

would be looking at an increase in standardized tests of about 3% of a standard deviation if

exposed to an environment in which the number of rejections was increased by one standard

deviation (i.e. about 25 cars for an average geographic-unit).

Another way to put our results into perspective is to consider alternative policies im-

plemented and their effects. For example, Troncoso et al. (2012) find that during pre-

emergencies in Santiago (the same city as in this work), [PM10] decreases by about 12% of

its mean. Translating our results to make them comparable to this context, I find that one

14from %v/v to (ppm) I have to multiply by 10000. From (ppm) to (ppb) I have to multiply by 1000.
15To do this, I would have to know the relevant air volume of each geographic-unit to calculate how these

concentrations alter the concentration for each pollutant.
16For the period they cover the standard deviation for [CO] in ppb was 0.95, whereas in our sample is

about 0.51.
17The standardized test scores they use (SIMCE) is standardized to have mean 200 and a standard

deviation of 50.
18Their main outcomes are measured around 8-9 years after being exposed to air pollution.
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would have to increase rejections by about 6 standard deviations to reduce [PM10] by the

same amount. Repeating the same exercise, but with [PM2.5] one would have to increase the

number of rejections 6 times (i.e. almost the same as with [PM10]). This helps to put into

perspective our results and their magnitude. Comparing this results, I can conclude that

our estimates suggest a small, but significant impact on local air pollution.

In a context more similar to ours in terms of levels of air pollution, Viard and Fu (2015)

finds that one-digit driving restrictions decrease PM10 levels by about 21%. Our estimates

suggest that a one standard deviation increase in the number of rejections translates into a

reduction of about 3% of PM10 with respect to its mean. The big difference in magnitude

is due to the fact that they are removing about 11% of the vehicular fleet from circulation,

but they are doing so in an indiscriminate fashion. The more comparable results in terms

of context are those of Sanders and Sandler (2017). These authors find that reinspecting

a 1000-high-emitting cars decreases [CO] and [NO2] by about 7% of a standard deviation.

However, I am considering much smaller boundaries for our geographic units (i.e. 5-kilometer

radius versus 15-kilometer radius) and this could explain the difference because air pollution

concentration might probably wash-out at larger distances as I discussed previously.

To end this section, I want to refer to our main falsification exercises. In table 9, I present the

coefficients associated with the estimation of our main specification, but now with the left-

hand-side variable lagged. In other words, I am estimating past pollution with the current

number of reinspections. Needless to say that it would be alarming if I find any statistically

significant result and/or big magnitudes. The latter, because it is not physically plausible

that rejections affects past levels of pollution. Nonetheless, if there are hidden trends not

captured by our fixed-effects or by weather covariates that affect the way in which rejections

and local air pollution relate this would be evident in this specification. From the evidence

displayed by this coefficients, one can say that these trends are not present, or that if there

is any trend it is extremely short lived and it does not persist for a long time (i.e. it has to

be present for less than one week). Even though this is not definitive evidence it is a small

guarantee for the absence of reverse causality in the most literal way. The magnitude of the
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coefficients is severely reduced from the previous estimations for every pollutant, except for

O3 and I do not find any statistically meaningful results which are coherent with our main

hypothesis.

Table 10 estimates equation 1, but excluding the critical winter months. For this estimation

I dropped from the estimation the months in which the average pollution (for all pollu-

tants) was higher: May, June, and July19. For example, for [CO] the mean during these

three months is almost twice the sample mean. This creates additional concerns regarding

identification since these months are particularly sensitive to the authorities regarding air

pollution and acute respiratory diseases. The magnitudes of the results are a little bit higher

for the case of PM10. For [CO], and [PM2.5] the magnitudes are somewhat smaller. For the

case of [NO2], I find a coefficient near zero and with the wrong sign. Notice that up to this

point our results for [NO2] do not seem to be very robust. For [O3] the story is more or less

the same as with [NO2], but with the opposite sign. In terms of statistical significance, I

lose the ability to find significant results for [PM2.5]. This could be explained by the fact

that I am dropping around 25% of our dataset. The conclusion of this exercise is that the

main results are not primarily driven by the different nature of winter months regarding air

pollution and rejections.

In table 12, I try to discard the fact that our outcomes could be the result of reducing the

number of cars circulating near the air quality monitor at each geographic-unit (i.e. that

reducing the total number of circulating cars is the mechanism by which rejections affect

pollution). For this reason, I estimate the main empirical equation, but using as the main

explanatory variable the total number of rejections by causes other than Smog-Checks (i.e.

malfunctioning lights, tire problems, etc. as described in section 3). Here, one can see that

all columns have a negative sign which is to be expected since removing cars from the streets

mechanically lowers environmental pollution. However, all coefficients are noisily estimated

and their magnitude is about half or less than the main results. This is reassuring since I can

state that simply removing cars from the street is not the main explanation for our results

19Recall from figure 1 that all pollutants, but O3 reached its peak during the winter.
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and that one need to detect and remove high-emitting cars to significantly reduce local air

pollution. Additionally, it is possible that there exists a positive correlation between being

rejected from, say having a bad tail light and having emissions above the norm since both

cases can be interpreted as signs of bad maintenance.

5.2 Station-Quality Heterogeneity

In this section, I study the potential heterogeneity behind our main results regarding station-

quality by estimating 5. As I discussed in section 4.2 I expect the effects of additional rejec-

tions conducted on low-quality stations to be noisily estimated and of a smaller magnitude

than those conducted at high-quality stations. It is important to remember that in this con-

text “quality” is an equilibrium result and even though I can hypothesize about the reasons

behind this, I am not able to unravel the underlying mechanisms behind this. As discussed

in section 4.2, the quality of plants is calculated based on one-month periods. In table 13, I

estimated the main equation, but separating those rejections conducted at high(low)-quality

stations according to the STAR program. I repeated this exercise for all the pollutants

available in our dataset. In line with our main hypothesis, I do not find any statistically

significant result for rejections certified at low-quality stations. Additionally, the magnitude

of this coefficients is never above 1% of a standard deviation and even has the opposite sign

as one would have expected. However, when I refer to the coefficients of high-quality plants,

one can see that the sign is agreement with our main results of the previous section and the

magnitudes are always higher. The latter is consistent with the fact that I was averaging

among qualities and now I can divide the contribution of quality separately. Even more

impressive is the fact that I am able to find a negative and statistically significant coefficient

for [O3]. This probably is reflecting the fact that [O3] formation depends on [NO2] among

other things and that now I can find statistically significant effects for it, but I do not have

a solid explanation to support this specific result.

In table 14, I repeat the same exercise but allowing for a one-week period so the impacts

can take place. Again, the magnitude of the results remains fairly unchanged. However, a
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little of significance on [NO2], and [O3] is lost. However, they are still marginally significant.

This reinforces our prior that the contribution of car-pollution to the production function for

[O3] seems to empirically depend on the concentration of [NO2]. Once more, for simplicity,

I only show the results for this specification, but the specific details of the lag-period seem

to have little implications.

One additional conclusion of the two previous exercises is related to the falsification exercise

in which I use the total number of rejections by causes different than Smog-Checks to explain

local air pollution. Since I concluded that it is not enough to simply remove cars from the

street to reduce local air pollution and that one needs to remove high-emitting cars, the

results of this section can be interpreted in this fashion. The quality-measure I am using is

intended to capture specifically this effect: how good are plants in recognizing, in average,

which cars should be removed because of their elevated tailpipe emissions. The evidence

that low-quality plants do not help in reducing local air pollution reinforces the fact that

removing cars from the street is not the main driver of our results. In fact, only by removing

cars because of their Smog-Checks can explain the main results. Additionally, these results

are strengthened when one looks at Smog-Checks rejections from stations which are good at

detecting high-emitting cars.

Even though the STAR program grades stations as high-quality if they are above the 0.75

SVFR threshold, on table 15 I present the same exercise as described in the previous para-

graph, but changing the quality-threshold. Notice that the results remain fairly unchanged

in terms of their magnitude and statistical significance for both βH and βL. I am not able

to keep moving the threshold to a more “relaxed” scenario (i.e. a lower SVFR-threshold),

because I am left with very few observations and start estimating this equation with several

zeros in it, and if I drop the zeros I am left with a small number of observations so the

exercise would not make much sense. When I move to a stricter scenario (i.e. I move to a

higher SVFR-threshold) the results remain more or less the same in terms of magnitudes

and statistical significance. This means that even though this metric is capturing the het-

erogeneity in station quality the specific level of the threshold does not seem to be of much
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relevance. What seems to be crucial is to exclude from the estimations the rejections coming

from plants situated at the lower end along the quality distribution.

6 Conclusions

In this work, I estimate the effects of removing an additional high-emitting car by the Smog-

Checks system in terms of local air pollution. I used data from the air quality monitoring

network (SINCA) and data from the Smog-Checks system maintained by the Office of Trans-

port and Telecommunications. I constructed a panel data from 2008-2016 associating each

monitor with the smog-checks stations situated nearby. The main results indicate that re-

moving an additional standard deviation of cars due to their emissions decreases [CO], [NO2],

[PM10], and [PM2.5] by 5,1%, 6%, 1,4%, and 5,8% of a standard deviation respectively. As

discussed earlier, this is about 16.7% of the decreased accomplished by establishing and

environmental pre-emergency. Not only these results are statistically significant, they also

seem to be economically significant according to the related literature of the economic costs

of air pollution. These results remain significant after a series of robustness checks and are

subject to a couple of falsification exercises.

Additionally, I explored the potential heterogeneity behind our results due to the differ-

ences in station quality. By using a metric derived from California’s STAR program, which

compares the expected rejection rate for each station with the realized rejection rate, af-

ter controlling for all the available car characteristics, I find that low-quality stations have

virtually no impact in terms of air pollution, while high-quality station seems to drive the

main results. This is relevant in terms of public policy since the regulator could use this

metric to increase monitoring in low-quality stations and possibly enhance welfare through

the reduction of local air pollution.

Finally, based on this work, I can conclude that the Smog-Check system is fulfilling its main

objective. However, there is plenty of room for improvement. One way the regulator can
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further reduce local air pollution through this system is by adopting monitoring tactics based

on the quality-metrics used in this work. Furthermore, the regulator could use this dataset

to notify owners who are not complying with their inspection schedule20.

20i.e. based on this dataset the regulator can send notifications to car-owners in case they are behind their
inspection schedules.
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7 Appendix

7.1 Appendix 1: Tables and Figures

Table 1: Descriptive Statistics of Daily Inspections and Rejections Conducted at each Geographic-
Unit for Each Year.

Inspections Total Rejections S.C. Rejections
Year Mean S.D. Mean S.D. Mean S.D.
2008 310.40 244.68 53.96 52.67 18.26 18.29
2009 336.67 255.24 159.74 150.82 30.00 30.35
2010 395.02 317.01 176.72 181.18 29.89 33.93
2011 412.47 342.40 182.95 190.69 26.39 30.60
2012 459.15 388.62 167.15 166.16 23.21 23.46
2013 477.31 392.05 148.50 145.91 19.59 20.54
2014 469.85 370.61 140.62 134.62 16.55 16.27
2015 456.78 365.24 125.44 122.11 16.41 13.88
2016 428.22 332.25 139.59 102.35 20.74 14.46
Total 418.20 342.49 143.69 147.78 22.28 23.87

Inspections consists of all the Smog-Checks conducted daily by each geographic unit. Total
Rejections are inspections that ended in a rejection by all causes. S.C. Rejections are rejections
exclusively from the Smog-Checks.

Table 2: Number of Observations (Inspections Conducted) by year in the Metropolitan Region.

Year Observations
2008 1,533,376
2009 1,660,754
2010 1,839,362
2011 1,855,867
2012 2,190,446
2013 2,401,996
2014 2,432,208
2015 2,577,507
2016 2,809,005
Total 19,300,521
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Table 3: Mean of Daily Concentrations of Several Air Pollutants by Geographic Region for Each
Year.

[CO] [NO2] [PM2.5] [PM10] [O3]
Year Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
2008 738.73 644.23 23.74 11.30 31.49 15.35 67.09 28.10 15.95 7.89
2009 962.65 571.76 23.81 9.83 27.95 12.58 66.37 125.72 6.07 7.46
2010 760.18 500.45 22.11 9.31 25.97 12.30 63.42 125.08 6.16 6.95
2011 742.91 537.37 22.04 10.01 26.55 12.57 67.67 26.88 15.04 6.94
2012 702.95 464.51 21.97 9.93 25.00 12.21 66.18 128.53 4.46 7.17
2013 703.85 472.87 23.01 9.76 25.86 11.06 69.62 125.83 5.51 7.23
2014 644.99 406.34 20.23 8.98 27.91 17.01 62.72 24.42 14.83 7.48
2015 682.74 451.10 22.79 12.44 30.22 19.13 70.38 33.64 14.07 6.96
2016 616.97 400.32 23.10 9.35 29.74 18.20 65.25 123.06 2.92 7.14
Total 728.40 508.04 22.43 10.18 27.76 14.89 66.49 127.05 4.81 7.32

All pollutants are in ppb, except PM2.5 and PM10 which are in µg/m3. PM10 and PM2.5 corresponds to
Particulate Matter of 10µM and 2.5µM respectively. NO2 stands for Nitrous Dioxide.
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Figure 1: Daily Concentration Averages for Different Pollutants across our Sample Period.
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Figure 2: Descriptive Statistics using data from 2008. Groups are defined as tranches of 4 years
of age.
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Table 4: Impact of Rejections on Daily Carbon Monoxide Concentrations

(1) (2) (3) (4)
CO CO CO CO

Rejections 0.012 -0.044+ -0.046∗ -0.048∗∗

(0.0124) (0.0202) (0.0149) (0.0150)
N 16484 16484 15479 15479
R2 0.001 0.033 0.315 0.317
adj. R2 0.001 0.032 0.315 0.316
County FE NO YES YES YES
Weather Controls NO NO YES YES
Day FE NO NO NO YES

Regressions of Daily [CO] on Rejections from the Day Before, controlling for
Weather Covariates, and Day and Geographic-Unit Fixed Effects.

Clustered Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Impact of Rejections on Daily Nitrous Dioxide Concentrations

(1) (2) (3) (4)
NO2 NO2 NO2 NO2

Rejections 0.0610 -0.0124 -0.0239 -0.0343
(0.0410) (0.0183) (0.0183) (0.0210)

N 15326 15326 14329 14329
R2 0.035 0.164 0.383 0.388
adj. R2 0.035 0.163 0.382 0.387
County FE NO YES YES YES
Weather Controls NO NO YES YES
Day FE NO NO NO YES

Regressions of Daily [NO2] on Rejections from the Day Before, controlling
for Weather Covariates, and Day, and Geographic-Unit Fixed Effects.

Clustered Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Impact of Rejections on Daily Concentrations of Different Air Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.0523∗∗ -0.0074∗ -0.0343 -0.048∗∗ 0.012
(0.0161) (0.003) (0.0210) (0.0150) (0.0166)

N 15323 15846 14329 15479 15514
R2 0.216 0.248 0.388 0.317 0.624
adj. R2 0.215 0.247 0.387 0.316 0.624

Regressions of Daily [Pollutants] on Rejections from the Day Before, controlling for Weather
Covariates, and Day and Geographic-Unit Fixed Effects.

Clustered Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Impact of Lagged Rejections on Different Air Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.058∗∗ -0.014∗∗∗ -0.060∗ -0.051∗∗∗ 0.027
(0.0148) (0.0019) (0.0236) (0.0108) (0.2120)

N 15288 15807 14299 15440 15475
R2 0.270 0.305 0.467 0.385 0.648
adj. R2 0.269 0.304 0.466 0.385 0.648

Regressions of Daily [Pollutants] on Rejections (one-week lag), controlling for Weather Co-
variates, and Day and Geographic-Unit Fixed Effects.

Clustered Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Aggregated Impact of Lagged Reinspections on Different Air Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.0379∗ -0.0641∗∗ -0.0625∗∗ -0.0231+ 0.00669
(0.0149) (0.0156) (0.0132) (0.0126) (0.00952)

N 2704 2704 2704 2704 2704
R2 0.381 0.365 0.554 0.581 0.770
adj. R2 0.380 0.363 0.553 0.580 0.769

Regressions of Daily [Pollutants] on Rejections (one-week lag), Controlling for Weather Co-
variates, and Polynomial Time Trends. The Geographical Aggregation Level is Metropolitan
Region.

Newey-West Standard Errors in Parentheses (one-period lag).
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Falsification Exercise: Impact of Rejections on the Lag of Different Air Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.0055 -0.0001 0.0030 -0.0130 0.0027
(0.0114) (0.0024) (0.0118) (0.0120) (0.0166)

N 15254 15774 14270 15418 15438
R2 0.829 0.820 0.846 0.729 0.903
adj. R2 0.792 0.782 0.810 0.671 0.882

Regressions of Daily [Pollutants] (one-week lag) on Current Rejections, Controlling for
Weather Covariates, and Day and Geographic-Unit Fixed Effects.

Clustered Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: Impact of Lagged Rejections on Different Air Pollutants Excluding Critical Winter
Months

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.0318+ -0.0193 0.00828 -0.0295∗∗ -0.0152
(0.0154) (0.0156) (0.0238) (0.00780) (0.0248)

N 15678 16326 14422 16043 16067
R2 0.806 0.836 0.851 0.611 0.878
adj. R2 0.777 0.813 0.827 0.555 0.861

Regressions of Different Air Pollutants on the Number of Rejections (one-week lag), Control-
ling for Weather Covariates with Day, and Geographic-Unit Fixed Effects. Critical Winter
Months are Excluded from Estimation.

Clustered Standard Errors in Parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11: Aggregated Impact of Lagged Rejections on Different Air Pollutants Excluding Critical
Months.

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections -0.0407∗ -0.0826∗∗ -0.0696∗∗ -0.0295∗ 0.0177
(0.0172) (0.0177) (0.0154) (0.0146) (0.0125)

N 2703 2703 2697 2703 2702
R2 0.362 0.356 0.533 0.553 0.746
adj. R2 0.360 0.354 0.532 0.552 0.745

Regressions of Daily [Pollutants] on Rejections (one-week lag), Controlling for Weather
Covariates, and Polynomial Time Trends. Critical Winter Months are Excluded from Esti-
mation. Geographical Aggregation Level is Metropolitan Region.

Newey-West Standard Errors in Parentheses (one-period lag).
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Falsification Exercise: Impact of Lagged Rejections from Other Causes on Different Air
Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

Rejections (Other-Causes) -0.0230 -0.00643 -0.00118 -0.0294 -0.0189
(0.0310) (0.0168) (0.0249) (0.0171) (0.0225)

N 21175 21896 19604 21455 21462
R2 0.838 0.843 0.848 0.736 0.910
adj. R2 0.814 0.821 0.824 0.699 0.898

Regressions of Different Air Pollutants on the Number of Rejections (one-week lag) by Causes Other
Than Smog-Checks Controlling for Weather Covariates and Day, and Geographic-Unit Fixed Effects

Clustered Standard Errors in Parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 13: Impact of Rejections Conducted on High(Low)-Quality Stations on Different Air Pol-
lutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

R (q=“High”) -0.0165 -0.0203 -0.0605∗∗ -0.0655∗∗ -0.0513∗∗∗

(0.0293) (0.0143) (0.0235) (0.0254) (0.0150)
R (q=“Low”) -0.0124 0.0148 0.0112 0.0137 0.0138

(0.0192) (0.0173) (0.0188) (0.0141) (0.0167)
N 21211 21949 19634 21508 21515
R2 0.838 0.844 0.850 0.739 0.912
adj. R2 0.814 0.822 0.826 0.701 0.899

Regressions of Different Air Pollutants on the Number of Rejections from the Day Before,
Conducted at High (Low)-Quality Stations with Weather Controls, Day, and Geographic-
Unit Fixed Effects.

Clustered Standard Errors in Parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 14: Impact of Lagged Rejections Conducted on High(Low)-Quality Stations on Different
Air Pollutants

(1) (2) (3) (4) (5)
PM2.5 PM10 NO2 CO O3

R (q=“High”) -0.0160 -0.0306+ -0.0611+ -0.0733∗∗ -0.0482∗∗

(0.0279) (0.0140) (0.0280) (0.0242) (0.0176)

R (q=“Low”) -0.0159 0.00201 0.0104 0.00304 0.0128
(0.0139) (0.0143) (0.0198) (0.00986) (0.0192)

N 21181 21905 19609 21464 21471
R2 0.838 0.844 0.850 0.739 0.912
adj. R2 0.814 0.822 0.826 0.702 0.900

Regressions of Different Air Pollutants on the Number Rejections (one-week lag) Conducted
at High(Low)-Quality Stations with Weather Controls, Day, and Geographic-Unit Fixed
Effects.

Clustered Standard Errors in Parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 15: Impact of Lagged Rejections Conducted on High(Low)-Quality, Changing the Quality-
Thresholds Stations on Carbon Monoxide

(1) (2) (3)
[CO] [CO] [CO]

R (q=“High”) -0.0647∗∗ -0.0638∗∗ -0.0621∗∗

(0.0252) (0.0265) (0.0274)
R (q=“Low”) 0.0118 0.0138 0.0197

(0.0108) (0.0115) (0.0112)
SVFR-Threshold 0.75 0.80 0.85
N 21508 21508 21508
R2 0.739 0.739 0.739
adj. R2 0.701 0.701 0.701

Regressions of [CO] on the Number of Rejections (one-week lag)
Conducted at High(Low)-Quality Stations, with different Quality-
Thresholds, Controlling for Weather Covariates, Day, and Geographic-
Unit Fixed Effects.

Clustered Standard Errors in Parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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7.2 Appendix 2

In this section, the nature of the measurement error regarding the main independent variable is discussed.

This is relevant since the number of rejections is a proxy for the total number of cars being effectively

removed/repair. Suppose that the real model is:

Y = βR∗ + ε. (6)

Where Y corresponds to daily pollution levels for each geographic-unit. R∗ represents the number of cars

rejected that are effectively removed/repair after being rejected by the Smog-Checks system. Notice that we

are only able to observe:

R = R∗ + Z. (7)

Where, R is the daily number of rejection at each geographic-unit and Z represents the daily number of car-

owners that keep driving and/or do not conduct any significant repairs to their cars, even after being rejected.

This case is a little bit different from the classical measurement error since I know that cov(Z, ε) ≥ 0. In

intuitive terms, this means that when there is a larger number of cars that do not stop driving and/or

not repair their cars after getting a rejection, the error term is going to be larger (i.e. pollution will be

higher than what our model would be able to predict or capture). I will call V[R] = σ2
R, V[Z] = σ2

Z , and

cov[Z, ε] = σZ,ε ≥ 0. Additionally, I know that if Z, and R∗ are correlated, then cov(Z,R∗) = σ2
Z,R∗ > 0.

Our identification assumption holds: cov[R∗, ε] = 0.

The OLS estimator of β is:

β̂ = [R′R]−1(Ry). (8)

Replacing equation 7 and 6 in 8:

β̂ =[(R∗ + Z)′(R∗ + Z)]−1((R∗ + Z)′y)

=[R∗R∗
′
+ 2R∗

′
Z + Z

′
Z]−1[(R∗ + Z)′(βR∗ + ε)]

=[R∗R∗
′
+ 2R∗

′
Z + Z

′
Z]−1

{
[R∗

′
R∗β] + [Z

′
R∗β] + [R∗

′
ε] + [Z

′
ε]
}
.

(9)

Rewriting the last expression in scalar notation I get:

β̂ =

[
1
NT

∑N
i

∑T
t R
∗
itR
∗
itβ

]
+
[

1
NT

∑N
i
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∗
itβ

]
+

[
1
NT

∑N
i

∑T
t R
∗
itεit

]
+

[
1
NT
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i

∑T
t Zitεit

]

[
1
NT

∑N
i

∑T
t R
∗
itR
∗
it + 2 1

NT

∑N
i

∑T
t R
∗
itZit + 1

NT

∑N
i

∑T
t ZitZit

] . (10)

Now applying limits in probability to the whole expression in 10, I get:
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(11)

Using basic limits’ properties I will do this separately for the ease of presentation. I will treat the four terms

in the numerator separately from the denominator. Starting with the four terms in the numerator of 11:

plim
N,T→∞
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NT

N∑

i

T∑

t

R∗itR
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]
= σ2

Rβ. (12)
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ZitR
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]
= σ2

Z,R∗ . (13)

plim
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NT
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t

R∗itεit

]
= 0. (14)

plim
N,T→∞

[
1

NT

N∑

i

T∑

t

Zitεit

]
= σZ,ε. (15)

Distributing the limits in probability to the terms in the denominator of 11 and proceed from left to right

we get:

plim
N,T→∞

[
1

NT

N∑

i

T∑

t

R∗itR
∗
it

]
= σ2

R. (16)

2 plim
N,T→∞

[
1

NT
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i
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t

R∗itZit
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= 2σ2

R∗,Z . (17)

plim
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[
1

NT

N∑

i
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t

ZitZit

]
= σ2

Z . (18)

Gathering all those terms:

plim
N,T→∞

[β̂] = β
σ2
R + σ2

R∗,Z

σ2
R + 2σ2

R∗,Z + σ2
Z

+
σZε

σ2
R + 2σ2

R∗,Z + σ2
Z

. (19)

Notice, that the term that accompanies β is less than one. This term is similar to the term that appears in a

classical measurement error context. Additionally, since I know, from theory, that β < 0 and that σZε > 0,

I am adding a positive term to a negative one. This means that the presence of cars that are not complying

with the regulations and/or owners that keep driving without conducting any meaningful repairs will bias

our estimates toward zero. The conclusion of this section is that our estimates correspond to lower-bounds

of the true impact of rejecting a high-emitting additional car in terms of local air pollution.
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