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Abstract

This paper studies price-setting decisions under Rational Inattention. Prices are set by

tracking an unobserved target whose distribution is also unknown. The distribution of the

target can change over time depending on persistent and unanticipated volatility shocks

that hit the economy. Information acquisition is dynamic and fully flexible since, given

information acquired in the past, business owners choose the amount of information they

collect as well as how they want to learn about both the outcome and its distribution. We

show that by allowing for imperfect information to be the unique source of rigidity, the

model can simultaneously reconcile several stylized facts in the microeconomic evidence

on price setting, both at the cross-sectional and time series levels. Dynamic imperfect

information endogenously generates persistence in beliefs, which is crucial in replicating

the dynamic empirical behavior of prices.
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1 Introduction

What are the dynamic implications of imperfect information for price setting? What are the

effects of time-varying volatility shocks on price setting? To set prices, owners must first

acquire information about unpredictable components of their industries such as elasticities,

their current demand, or the state of the economy. In reality, these price decisions are made

with only partial information about both the realization of shocks and the stochastic process

that generates them. This is relevant as the distribution of shocks is not only unknown but

also likely to change over time, reflecting unanticipated periods of lower or higher uncertainty

such as recessions. Despite the limited information, a rational price setter would adjust their

behavior in response to perceived changes in their environment, and economic aggregates reflect

those adjustments.

This paper argues that the aggregate effects documented using micro evidence on prices, both

at the cross-sectional and time series level, can be rationalized as an implication of the dynamic

process of collecting imperfect information about unobserved shocks while trying to uncover the

distribution that generates them. The results contribute to the literature on the implications of

imperfect information on aggregate conditions, started by the seminal contributions of Phelps

(1967) and Lucas (1972), by mapping the role of dynamic imperfect information on aggregate

price stability.

We propose a model of endogenous attention with costly entropy reduction to study how

firms set prices when the distribution of shocks is time-varying. The model follows the literature

on “Rational-Inattention” (henceforth, RI) Sims (2003), and allows for a dynamic and fully

flexible information scheme. While past acquired information is relevant, we do not impose

further assumptions on the amount of information being acquired or how owners choose to

acquire it, i.e., there are no parametric assumptions on the distribution of signals. Firms

collect information to update their beliefs about the realization of an aggregate fundamental,

along with the distribution that generated it. As the predictability of the outcome depends on

the persistent parameters that govern the distribution, the incentives to acquire information

respond to owners’ idiosyncratic beliefs, creating a dynamic learning problem.

The theory of RI has proven consistent with the empirical behavior of firms while providing a

mechanism able to reconcile both individual and aggregate decisions. Using novel data on firms’

expectations in New Zealand, Coibion, Gorodnichenko and Kumar (2018) argues that firms’

behavior towards acquiring information is in line with the predictions of RI. Matějka (2015)

stressed how RI is consistent with discrete pricing (a feature that resembles price stickiness)

while generating the negative hazard rate for price changes as suggested by the data. Maćkowiak

and Wiederholt (2009) shows how the sluggish reaction of prices to aggregate shocks is consistent

with price setters deciding how to optimally split their limited attention between idiosyncratic

or aggregate conditions. This paper supports the relevance of studying the dynamic implications
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of imperfect information by showing how this friction alone can simultaneously explain several

features of the data at the cross-sectional and time series levels.

The model endogenously generates a positive response of price-change dispersion to volat-

ility shocks along with a positive comovement between the dispersion and frequency of price

changes.1 These two features are in line with recent empirical evidence on price setting at

the micro-level. Bachmann, Born, Elstner and Grimme (2019), Drenik and Perez (2018) and

Klepacz (2017) document the existence of a positive correlation between volatility shocks and

price-change dispersion. Moreover, the existence of a positive correlation between price-change

dispersion (intensive margin) and the frequency of price changes (extensive margin) was shown

by Vavra (2013). As owners are active learners, the results are also consistent with the presence

of time-varying attention as documented by Coibion and Gorodnichenko (2015).

Solving a model in which information acquisition is dynamic and fully flexible imposes sev-

eral methodological challenges. These challenges arise precisely because of its flexible structure.

Acquired information has an effect on both pricing decisions and posterior beliefs about the

next period’s distribution. To allow for a dynamic setting, a common assumption in the RI

literature is to assume a Gaussian distribution for the shock process. Typically this distribution

is known with certainty. This assumption combined with a quadratic loss function leads to a

closed form for the optimal signal structure, given by the outcome realization plus normally

distributed noise as in Woodford (2003) and Maćkowiak, Matějka and Wiederholt (2018). In

this paper, however, the optimal structure of signals depends on how firms choose to attach

different probabilities to each possible shocks distribution. As information acquired in the past

guides their decisions, the challenge is how to characterize the effects of flexible current inform-

ation on posterior beliefs. We circumvent this problem by building on the solution proposed by

Steiner, Stewart and Matějka (2017). Furthermore, we provide an algorithm tailored to solve

this dynamic learning model.

The model is simulated and calibrated to replicate several stylized facts of price changes.

To the best of our knowledge, the extent by which a fully flexible dynamic RI model can

match the time series features of the data along with the evidence at the intensive margin, has

not been previously addressed in the literature. To match moments, we assume a parametric

distribution for information costs. The magnitude of cost dispersion across firms is meaningful

as it is roughly half of the average cost. Since the cost of information is one of the critical

parameters in the RI literature, the results are informative as they shed light on the degree of

dispersion of this rigidity across firms.

Imperfect information about the persistent parameters that govern the distribution endo-

genously generates persistence in beliefs. While the economy can stochastically evolve across

different volatility states, with different distributions for the shock process, costly information

1We will make the distinction between “dispersion” and “volatility.” In this context, dispersion refers to the
spread (typically measured as the standard deviation) of endogenous variables for the cross section of firms.
Meanwhile, volatility refers to the spread of exogenous shocks.
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affects the probability of even noticing a state change. A higher cost of information (relative to

the assumed cost distribution), lead firms to optimally design information and pricing strategies

that do not waste further attention on recognizing any possible distribution change. Hence,

their pricing decisions are based on an aggregate state, which is perceived as being absorbing.

However, access to cheaper information allows firms to recognize a distribution change via their

optimal strategies. Although their reaction to the new state can also be sluggish, after they

start attaching more probability to the new possible distribution, they start modifying their

information and pricing decisions accordingly. Therefore as the economy exogenously moves

across different states, firms with heterogeneous beliefs coexist. This is the main mechanism

that allows the model to replicate some of the key features of the data after aggregating all

pricing decisions.

While imperfect information is the only friction, the model is still consistent with the fact

that individual prices stay constant for some time (extensive margin). As argued by Matějka

(2015) and Jung, Kim, Matejka, Sims et al. (2019), a Rationally Inattentive agent chooses

to price discretely when the processes for the fundamentals are not Gaussian. Uncertainty

about the correct distribution is modeled by assuming a mixture of normal distributions for

the optimal price. Because of this assumption, agents will not change their prices in every

period, creating price stickiness. The simulated duration is, however, shorter compared to the

data. Adding further frictions, such as price rigidities within the described dynamic learning

structure, emerges as a natural extension of this paper. The combination of menu-costs with

heterogeneous persistent beliefs would presumably amplify the documented effects on price

dispersion as the economy moves across different volatility states.

The ability of the model to replicate the aforementioned evidence at the time series level

crucially depends on the simultaneous presence of a dynamic, flexible information framework,

with time-invariant heterogeneous costs. The model then nests two previously studied settings

in the RI literature. With full information about the shock distribution, the model becomes

static with a Gaussian unobserved target-price. This setting resembles the one presented by

Woodford (2003) and Maćkowiak and Wiederholt (2009). A dynamic model with homogeneous

information costs was also analyzed by Matějka (2015). We also propose an alternative version

where all firms collect information of the same optimal price. We show how each assumption

on its own is not enough to simultaneously replicate the dynamic relationships suggested by

the data.

The paper contributes to the price-setting literature with information frictions. Alvarez,

Lippi and Paciello (2011) solves a price-setting problem with observation and menu costs. The

authors show how these two costs complement each other, delivering different implications for

the timing of price reviews. Gorodnichenko (2008) solves a model with information frictions

and menu costs. Moscarini (2004) introduces a pricing problem with limited information, where

agents are restricted to receive new information infrequently creating inertia in their behavior.
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Woodford (2009) introduces a setting with menu-costs, where the decisions to conduct a price

review is made under RI. Vavra (2013) studies the dynamic behavior of price setting and argues

how a menu-cost model, with time-variant idiosyncratic shocks, can match the dynamic features

of prices. While all these papers rely on the crucial role of price rigidities, this paper aims to

highlight the role of information rigidities as a key driver behind aggregate decisions.2 Baley

and Blanco (2018) studies dynamic pricing with menu-costs and information rigidities. In their

set up, the timing of volatility shocks is known with certainty, which is precisely the primary

assumption this paper aims to relax.

RI models have proven useful when rationalizing the empirical behavior of micro prices

along with their aggregate implications. Maćkowiak and Wiederholt (2009) proposes a pri-

cing model with endogenous attention to explain the sluggish response of prices to aggregate

shocks. Matějka (2015) alternatively introduce a model that does not rely on quadratic object-

ives nor Gaussian distributions, as in Maćkowiak and Wiederholt (2009), which endogenously

generates price discreteness. Afrouzi (2018) solves a dynamic general equilibrium model with

inattentive price setters, Gaussian signals, and strategic complementarities between them. Pa-

ciello and Wiederholt (2013) shows how under costly information, monetary policy can reduce

inefficient price dispersion by affecting the response of profit-maximizing prices to unobserved

markup shocks. Finally, Stevens (2019) presents a price-setting model with constrained in-

formation which can capture the heterogeneous patterns of adjustments observed in the data,

along with the sluggish response of prices to shocks. This paper contributes to this literature

by studying the unexplored ability of these models to match the aggregate implications of the

two price margins while being consistent with the evidence at the micro-level.

The rest of the paper is structured as follows. In Section 2, we introduce the model set

up and discuss the dynamic costly information setting. We then fully derive and characterize

the solution to the problem. Section 3 presents the algorithm used to replicate both cross-

sectional and time-series moments from the data. The main results of the paper are discussed

in Section 4, where we lay out both individual and aggregate implications under persistent

volatility shocks. Section 5 introduces some alternative specification for the model. Finally,

Section 6 concludes.

2The results can also contribute to the discussion about optimal policy within a price setting framework.
Paciello and Wiederholt (2013) shows how replacing a price rigidity with an imperfect information mechanism is
not innocuous for policy counterfactuals. While an optimal policy argument is beyond the scope of this paper,
the results certainly lead the discussion towards that direction.
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2 The dynamic learning pricing model

2.1 Set up

The setting is a partial equilibrium model where time is discrete t ≥ 0 and there are a fixed

number of firms i = 1, . . . , N . Firm owners choose prices pit from a finite set Ωp to maximize

the present discounted value of profits. Each firm can adjust its price costlessly in every period

so pit is set to maximize current profits Π̂(pit, p̂it). Following Caplin and Leahy (1997) and

Alvarez et al. (2011), the profit function is set equal to:

Π̂(pit, p̂it) = γ(pit − p̂it)2 (1)

The objective function (1) can be interpreted as a second-order approximation of a more

general profit function around its non-stochastic steady state. The details behind the approxim-

ation are presented in Appendix 7.1. The parameter γ represents the curvature of the demand

function and p̂it is labelled as the idiosyncratic “price-target”. Given the approximation, p̂it is

a function of firms’ marginal costs. In the model, owners do not have complete information

about cost conditions as they cannot fully track the shocks affecting their production due to

their own limitations in processing information.3

Imperfect information about the current distribution of p̂it is modeled in the following way.

There are two independent shocks drawn in each period t from finite sets, σt ∈ Ωσ and εit ∈ Ωε.

The price-target is assumed equal to p̂it = σtεit. Underlying the shocks evolution is a probability

distribution induced by a Markov Chain on Ωσ and a discretized Gaussian on Ωε, with mean zero

and unit variance. Thus, while the former shock is persistent, the latter is i.i.d. The stochastic

process of both shocks is common information across firms.4 We assume Ωσ := {σL, σH} ⊆ R+,

with σH = φσL, φ > 1. The transition probabilities of switching from the σL to the σH state,

and viceversa, are labelled as τLH and τHL respectively.

The two components of the target-price are aimed at capturing idiosyncratic and aggregate

uncertainty across firms. Since neither of the two shocks is fully observed, firms are not only

uncertain about the realization of p̂it, they also do not know if the price was drawn from

3Bachmann and Moscarini (2011) argues how different cost variables (such as input price elasticities or costs
structures) are hard to estimate by firms. Think about owners who want to maximize profits but have multiple
demands on their time such as reading reports about the firm’s inventory levels, projecting future sales, testing
and developing new products, collecting information about clients’ reactions to historical prices, among others.
Information is imperfect in this case, as owners cannot possibly precisely remember all the information when
setting a price.

4Based on the second order approximation, the target-price is equivalent to log(P ∗it), where P ∗it is a constant
mark-up over time-varying idiosyncratic marginal costs, see Appendix 7.1. Hence, negative values of p̂it are
consistent with P ∗it ∈ (0, 1). Moreover, the assumed stationarity of the target-price can be understood as
deviations from a (known) deterministic trend.
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N(0, σ2
L) or N(0, σ2

H). Therefore we will now refer interchangeably to persistent volatility states

and different distributions for the target-price.

2.2 Information Acquisition

To optimally set prices firms collect information about p̂it to minimize (1). As the predictability

of p̂it is “state-dependent”, owner’s beliefs about its current distribution will discipline their

efforts to collect information. The learning process is dynamic in the sense that previously

acquired information is still relevant for current decisions due to the persistence of volatility

states.

Firms enter each period with prior beliefs git(p̂it) = mit(σt)h(ε) ∈ ∆(Ωp̂) where Ωp̂ :=

Ωσ×Ωε. Hence, ∆(Ωp̂) is the set of all probability distributions on Ωp̂. In the definition, mit(σt)

and h(ε) are the prior probability measures of σt and εit respectively. Since the probability of

ε ∈ Ωε is i.i.d. and its stochastic process is known, its prior probability is constant across firms.

Owners acquire information about p̂it by choosing a signal sit ∈ Ωs, where |Ωp| ≤ |Ωs|. Firms

are rationally inattentive since through costly information they aim to reduce the entropy of

their beliefs, Sims (2003). Entropy about p̂it is defined as H(p̂it|St−1
i ) ≡ E[−log(p̂it)|St−1

i ],

where St−1
i = {sit−1, sit−2, . . . , si0}. Then St−1

i is the information set generated by the his-

tory of signals from firm i up to t − 1. Prior uncertainty about p̂it is then H(p̂it|St−1
i ) =

−∑σ

∑
ε git(p̂it|St−1

i )log(git(p̂it|St−1
i )), where sums are taken across all possible values of σ and

ε in their sets.

In line with RI models, the reduction in uncertainty is quantified by Shannon (1948)’s

measure of mutual information flow:

I(p̂it, sit|St−1
i ) ≡ H(p̂it|St−1

i )− Esit [H(p̂it|sit)|St−1
i ] (2)

Information flow (2) is the difference between prior and posterior uncertainty about p̂it,

conditioned on lagged information.5 Due to the Markov structure, all the relevant historical

information is summarized by the lagged value of the signal, St−1
i = {sit−1}. Thus, as long as

owners observe neither current nor lagged p̂it it is possible to assume perfect information about

further historical outcomes without compromising the model’s implications.

During each period t, owners choose an “information strategy” fit(sit, p̂it|sit−1)∈ ∆git(Ωs ×
Ωp̂) and a “pricing strategy” pit : ∆(Ωp̂) → Ωp. Information acquisition is then summarized

by the joint probability distribution of signals and optimal prices where ∆git(Ωs × Ωp̂) is the

set of all probability distributions on Ωs × Ωp̂, consistent with prior beliefs git(p̂it). After the

5As described, the entropy formula relies on logarithms which depending on the base, changes the units by
which we measure information. If the log is base two, then the information is measured in bits, while if it is e
it is measured in nats.
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price-target is drawn, the choice of fit(sit, p̂it|sit−1) reflects the type of acquired signal based on

the information simplification process chosen by each owner.

The expression for the mutual information in (2) can be written as a function of fit(sit, p̂it|sit−1).

Proposition 1 : Mutual Information Equivalence

Shannon’s mutual information (2) is equal to:

I(p̂it, sit|sit−1) =
∑

s

∑

σ

∑

ε

f(sit, p̂it|sit−1)log

(
f(sit, p̂it|st−1)

g(p̂it|st−1)f(sit|sit−1)

)
(3)

Proof in Appendix 7.2.

By setting an information strategy f(st, p̂it|st−1), owners are choosing the total amount of

information I(p̂it, st|st−1) to be acquired during each period.

2.3 The problem in two stages

Let us discuss the timing of the model. Within each period owners face two decisions: given prior

beliefs git(p̂it|sit−1) they choose fit(sit, p̂it|sit−1) and then, endowed with this new information,

they set prices p∗it. Owners are Bayesian as by combining posterior beliefs about σt with τLH

and τHL, they form prior beliefs for the next period git+1(p̂it+1|sit) = mit+1(σt+1|sit)h(ε).

The pricing strategy describes how owners react to the received signal sit by mapping

posterior beliefs f(p̂it|sit, sit−1) ∈ ∆(Ωp̂) to optimal prices p∗it(sit|sit−1).

p∗it(sit|sit−1) = arg max
pit

∑

σ

∑

ε

Π̂(pit, p̂it)fit(p̂it|sit, sit−1) (4)

At the information acquisition stage, owners face a trade-off. Signals with higher precision

allow them to observe p̂it with less noise, where the precision is determined by the channel’s

capacity (3). While owners can constantly modify the capacity, the cost of each additional unit

of information is given by λi > 0. The cost directly affects the profit function, and it is assumed

to differ across firms.

Information is fully flexible as firms set the precision of their signals by choosing f(p̂it, sit|sit−1)

without adding further parametric assumption about its particular shape. The chosen form for

the joint probability distribution determines total acquired information for each moment of

time. Moreover, as states are unobserved, each information strategy ultimately depend on

owner’s perceived prior distribution for p̂it:

p̂it ∼ mit(σL|sit−1)N(0, σ2
L) + (1−mit(σL|sit−1))N(0, σ2

H)
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Where mit(σL|sit−1) is the prior probability attached to the low volatility state of firm i,

given information acquired in the past.

At the first stage, given the policy function p∗it(sit|sit−1), I(p̂it, sit|sit−1) ≥ 0 and git(p̂it|sit−1),

firms choose the conditional distribution f(sit|p̂it, sit−1) to maximize expected profits relative

to the cost of information:

f(sit|p̂it, sit−1) = arg max
f̂(.)∈∆g(Ωs)

∑

s

∑

σ

∑

ε

Π̂(p∗it, p̂it)f̂(sit|p̂it, sit−1)g(p̂it|sit−1)− λiI(p̂it, sit|sit−1)

The information strategy shapes the posterior distribution of signals, which is equivalent to

choosing f(p̂it, sit|sit−1).

As the only purpose of costly information is to inform pricing decisions, through signals

the firm is implicitly and optimally choosing its optimal price by determining f(p̂it|sit, sit−1).

Therefore it is enough to solve for the optimal distribution of prices conditional on the realization

of the target-price. Matejka and McKay (2014) and Matějka (2015) formally show this result

for static RI problems, while Steiner et al. (2017) prove it within a dynamic setting with flexible

information. Intuitively, each signal sit ∈ Ωs will be associated with just one price pit ∈ Ωp.

If two signals lead to the same price, and since entropy is a concave function, the firm could

ended up setting the same price with a lower information cost.6

2.4 The dynamic RI problem

Let us now formally introduce the dynamic information acquisition problem. While the price-

setting decision is static, the unobserved and persistent distribution of p̂it implies a correlation

between consecutive periods. As the precision by which owners try to uncover the underlying

state of the economy is subject to their choice, prior beliefs mit(σjt|pit−1), j = L,H become the

state variable of the problem.

During each period t, given git(p̂it|pit−1) ∈ ∆(Ωp̂) and information costs λi > 0, owners

choose fit(pit, p̂it|pit−1) ∈ ∆g(Ωp × Ωp̂) to solve the dynamic problem:

V (mit(σL|pit−1)) = max
fit(p,p̂|pit−1)

∑

σ

∑

ε

∑

p

[Π̂(pit, p̂it) + βV (mit+1(σL|pit))]fit(pit, p̂it|pit−1)

− λiI(p̂it, sit|sit−1) (5)

6Moreover, since information is costly and f(p̂it, sit|sit−1) is endogenous, necessarily I(p̂it, p
∗
it|sit−1) ≤

I(p̂it, sit|sit−1). The linearity of the cost function is relevant under a dynamic setting as it prevents the firm
from stock unused information for future periods, Steiner et al. (2017).
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Subject to:

I(p̂it, sit|sit−1) = fit(p, p̂|pit−1)log

(
fit(pit, p̂it|pit−1)

git(p̂it|pit−1)fit(pit|pit−1)

)
(6)

git(p̂it|pit−1) = mit(σt|pit−1)h(ε) =
∑

p

fit(p, p̂it|pit−1) (7)

mit+1(σL|pit) = Tt+1(fit(σL|pit)) (8)

0 ≤ fit(p, p̂|pit−1) ≤ 1 (9)

Owners maximize the expected value of Π̂(pt, p̂it) with respect to the perceived probability

distribution of pit and p̂it relative to the total information cost. The cost λi forces the firm to

form a probabilistic conjecture of its optimal price given both the unobserved persistent and

i.i.d. shocks. Since the space of prices and shocks is finite, the strategy space is compact.

Therefore, from the continuity of the objective function, the RI problem has a solution.

The state variable in the value function (5) corresponds to the prior probability of the low

volatility state. Equation (7) forces the chosen joint probability distribution to be consistent

with owners’ prior beliefs. Without this constraint, owners could “forget” relevant information

acquired in the past. Equation (8) characterizes the belief updating process. In this equation,

Tt+1 represents the law of motion of σL based on the Markov switching probabilities, while its

argument is the posterior probability of the distribution of p̂it having low volatility at time t.

The fully-flexible information scheme imposes a challenge on how to solve (5) as the shape

of fit(pit, p̂it|pt−1) and its implications on I(p̂it, sit|sit−1), has a non-linear effect on continuation

values V (mit+1(σL|pit)). To tackle this issue, I build on the result proposed by Steiner et al.

(2017).7 The following system of non-linear equations characterizes the solution of (5) subject

to equations (6) to (9).

7This paper argues that a dynamic RI problem consistent with (5) is equivalent to a control problem without
uncertainty about p̂it. Because of this equivalence, firm’s continuation value are then a function of the history
of prices and shocks, so the decision about the shape of the joint probability distribution does not affect
V (mit+1(σL|pit)).
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Proposition 2 : Solution of the dynamic RI problem

mit(σL|pit−1) = (1− τLH)fit−1(σL|pit−1) + τHL(1− fit−1(σL|pit−1)) (10)

fit(pit|p̂it, pit−1) =
exp [(Π(pit, p̂it) + βV (mit+1(σL|pit))) /λi] fit(pit|pit−1)∑
p′ exp

[[
Π(p

′
it, p̂it) + βV (mit+1(σL|pit))

)
/λi
]
fit(p

′
it|pit−1)

(11)

V (mit(σL|pit)) = λiE

[∑

p

exp [(Π(pit, p̂it) + βV (mit+1(σL|pit))) /λi] fit(pit|pit−1)

]
(12)

Proof in Appendix 7.3.

For any λi > 0, (10), (11) and (12) summarize the main equations that solves the problem.

Equation (10) is the prior probability of being in the low volatility state as a function of

the Markov transition probabilities and lagged acquired information. The expression then

corresponds to the functional form of Tt in equation (8). The prior probability mit(σH |pit−1) is

simply the complement of equation (10). These two probabilities are embedded into git(p̂it|pit−1)

to force prior beliefs to be consistent with the joint probability distribution as stated in (7).

The form of the conditional probability fit(pt|p̂it, pit−1), i.e. the information strategy, is

characterized in (11). The probability resembles the dynamic Logit formula except for the term

fit(pit|pit−1), which multiplies the cost-benefit ratio of choosing the price pit. As fit(pt|pit−1) is

independent of realized shocks, it is interpreted as owner’s “predisposition” to chose each pit ∈
Ωp without additional current information. Following Steiner et al. (2017)’s characterization,

we interpret firms’ predisposition as prices that are chosen with high probability (on average)

across outcomes and states, i.e. f(pt|pt−1) = Ep̂it [f(p|p̂it, pt−1)]. The posterior probability

fit(pt|p̂it, pit−1) is a function of λi as its magnitude determines the amount of information to

process and, with this, the weight attached to prior probabilities. Pricing decisions are drawn

from (11) reflecting the noisiness in signals, whilst being consistent with owners’ idiosyncratic

state-dependent beliefs. Equation (12) shows the expression for the continuation value. See

Appendix 7.3 for the specific derivation of these last two expressions.

Due to imperfect information about both the outcome and its time-varying distribution,

there is no specific closed form for the posterior probability fit(pt|p̂it, pit−1).8 Moreover, as

information cost non-linearly affects both the posterior probability and continuation values, it

8Starting from the same model but assuming that the underlying distribution of p̂it is known with certainty
(i.e. a static framework), there would be a closed form expression for the posterior uncertainty. With a quadratic
objective and Gaussian distributions, the model boils down to a Bayesian updating set up, where the posterior
distribution of prices is equal to a weighted sum between prior beliefs and signals. Under RI, the weight attached
to signals becomes the choice variable of the problem.
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is difficult to anticipate how different values of λi would affect the information strategies. The

model is then solved numerically.

3 Numerical solutions

3.1 The algorithm

Before numerically solving the model, we need to introduce further assumptions about the

simplex of each variable. The computational intensity of RI models severely restricts this

decision, Tutino (2013). Let |Ωε| = 13 and |Ωp| = 25 be the number of possible values that the

idiosyncratic shock εit and prices pit, can take respectively.9 The different values for εit come

from a linearly equally-spaced grid ranging from −2σH to 2σH . Since git(p̂it) = mit(σ)h(ε), the

state variable is defined as the probability of being in the low state mit(σL) ∈ ∆(Ωσ), where

∆(Ωσ) is the belief simplex. The dimension of the belief simplex is |∆(Ωσ)| = 25, where each

point reflects distinct (equally spaced) values for the marginal probability of the economy being

in the low volatility state.

The algorithm to solve the dynamic RI problem is as follows:

1. Fix a value for the idiosyncratic information acquisition cost, e.g. λ1.

2. Given λ1 and the belief simplex, compute prior beliefs g(p̂it) = m(σt)h(εit).

3. With g(p̂it), the model is solved by Value Function Iteration.

3.1. Starting with a guess for the vector V (mt+1(σL)), we first solve the static RI problem.

The algorithm computes f(pit, p̂it|pit−1) ∈ ∆(Ωp×Ωσ ×Ωε) which is the solution for

the system of nonlinear equations (7), (11) and f(pt|pt−1) = Ept [f(p|ηit, pit−1)].

3.2. Given f(pit, p̂it|pit−1), the conditional probability f(σ|pit, pit−1) =
∑

ε f(σ, ε|pit, pit−1)

is computed for each pit ∈ Ωp. Through (10), posterior beliefs become the prior

beliefs for next period, which are used to update V (mt+1(σL)).

3.3. Relying on the definition for V (mit(σL|pt)) in (12), the algorithm iterates the value

function until convergence when, within each iteration, it re-estimates f(pit, p̂it|pit−1).

4. Repeat point 3 for all possible values in ∆(Ωσ), i.e. setting different priors g(p̂it).

5. Repeat 2, 3, and 4 for all possible values for λi.

The setting of the model and the decision on the shape of the joint probability distribu-

tion resembles a filtering problem. The numerical discrepancies between filtering with discrete

variables relative to continuous outcomes are not significant and depend on the nature of the

approximation, Farmer (2016) and Farmer and Toda (2017).

9Hence, there are 650 possible combinations of results from the three random variables, f(σ, ε, p) = 2×13×25.
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3.2 Calibration

The parameters in the model are: the discount rate β, switching probabilities τLH and τHL, the

price elasticity of demand η (which determines the curvature of demand γ), the volatility level

in the two states σL, σH = φσL, and the cost of acquiring information {λi}Ni=1. Each period

is a month, so we set the discount factor equal to β = 0.999. The transition probabilities are

assumed equal to τLH = 0.009 and τLH = 0.0355. These monthly transition probabilities imply

a quarterly probability of 2.9% of switching from the low to the high volatility state and a 89%

probability of remaining in the high volatility state. These numbers are roughly in line with

Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2018)’s estimates for the transition

across uncertainty regimes in the U.S. Following Nakamura and Steinsson (2008), the price

elasticity of demand is assumed θ = 4 (implying a 33% markup). Hence, γ = −10 as shown in

Appendix 7.1.

The remaining parameters are calibrated to match different stylized facts of individual price

changes, taken from microeconomic data.10 In particular, all the stylized facts are taken from

Vavra (2013). Using the algorithm described in 3.1, we simulate an economy with N = 7, 500

firms and T = 5, 500 periods. In the simulations, the economy evolves naturally across states

and idiosyncratic shocks, where we rule out the first 500 periods. To set the heterogeneity, we

assume there are 15 distinct values for λ, which are randomly and uniformly assigned across

firms, i.e. 15 × 500 = 7, 500. Without further evidence on the cost distribution, we assume

λi ∼ N(λ, σ2
λ) with the distribution truncated at zero. Given λ and σλ, the different values of

λ are given by the 15 equidistant percentiles (from 2.5 to 97.5) of this distribution. All these

four parameters {σL, φ, λ, σ2
λ} are calibrated to replicate the data.

3.3 Matching moments

Table 1 show the moments chosen from the data and their simulated counterparts from the

model. Frequency stands for the frequency of price reviews (fraction of prices that change)

per month across firms. The kurtosis from the distribution of price changes is labeled as

Kurtosis(|∆p|). E(|∆p|) is the average magnitude of a price change (in percentage points),

and E(Dispersion) is the average price-change dispersion across time. As these last three

moments are computed conditioned on a price change occurring, i.e. |∆pi,t| 6= 0, they aim

to reflect the intensive margin of price changes. Frequency, on the other hand, captures the

extensive margin of price adjustments. Besides these targeted moments, we assess the model’s

ability to replicate the data by focusing on additional (non-targeted) moments. Fraction small

is the proportion of small price changes, where a small change |∆pi,t| < 0.5E(|∆p|). Fraction

10In line with this approach, Woodford (2009) also collects empirical facts from the literature to assess the
ability of his model to replicate documented features.
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up is the fraction of price changes that are increased, and Corr(Dis, Freq) is the correlation

between the price-change dispersion and the frequency of price changes.

The dynamic RI model can match these features of the data, except for the frequency of

price changes. While prices remain constant in the model nearly half of the time, this is still

not enough to fully replicate the empirical evidence. However, this result is still relevant as the

model’s ability to partially replicate the degree of micro price stickiness is attained assuming

imperfect information as the unique friction.11 Matějka (2015) showed that RI is consistent

with price-setting evidence at the extensive margin. However, the intensive margin channel

was muted in his analysis. The average absolute size of price changes was also calibrated by

Maćkowiak and Wiederholt (2009), based on a RI model where prices change constantly. The

results in Table 1 suggest that a dynamic version of a RI model with flexible information is

consistent with the evidence at these two margins simultaneously. The model also matches the

empirical comovement between price-change dispersion and frequency over time. In Section

4, we provide further intuition on the mechanism by which the model can rationalize this

correlation.

Table 1: Matched Moments and Alternative Specifications

Targeted moments Data Baseline

Frequency 0.11 0.53
Kurtosis(|∆p|) 6.40 6.33
E(|∆p|) 0.077 0.079
E(Dispersion) 0.075 0.083

Non-Targeted moments

Fraction small 0.33 0.088
Fraction up 0.65 0.499
Corr(Dis, Freq) 0.506 0.534

Notes: all moments are taken from Vavra (2013). Frequency is the fraction of prices that change per month,

Kurtosis(|∆p|) is the kurtosis coefficient of the distribution of absolute price changes, E(|∆p|) is the average

magnitude of non-zero price changes, and E(Dispersion) is the average standard deviation of price changes

over time conditioned on a price change occurring. In addition, Fraction small is the percentage of small price

changes, fraction up is the proportion of prices that change upwards and Corr(Dis, Freq) is the time series

correlation between the dispersion and the frequency of price changes.

Table 2 displays the calibrated parameters. The volatility of the price-target in the high state

is double the volatility in the low state. The rise in volatility is in line with estimated uncertainty

parameters during episodes of economic distress, Bloom et al. (2018). The magnitude of the

standard deviation for the attention cost σλ ≈ 0.09 is considerable as it is more than half of the

average cost. While the calibrations rely on a parametric assumption about the distribution

11Targeting the frequency of price change is important not only to assess the possibility of replicating the
positive correlation between frequency and price-change dispersion over time, but also as a relevant moment to
pin down the average costs of information λ and its dispersion σλ.
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of costs, they are informative as they provide a quantitative assessment about the potential

dispersion of information rigidities across firms.

Table 2: Calibrated Parameters

Parameter Value Description

β 0.99 Discount Rate
γ -6 Curvature of demand function
τLH 0.009 Monthly transition probability: low/high state
τHL 0.0355 Monthly transition probability: high/high state
σL 0.0742 Volatility in low state
φ 2.05 Increase in volatility in high state

λ 0.17 Mean distribution information cost
σλ 0.09 Stdv distribution information cost

3.4 Information and pricing strategies

Given the calibrated parameters, let us describe the different implications of total acquired

information on price setting as a function of their different cost levels.

Initially owners choose their information strategies, which will inform their pricing decisions.

Uncertainty about the current distribution of p̂it implies that the decision made about total ac-

quired information will depend on prior beliefs about each state. Due to the cost heterogeneity,

we focus on three type of firms, specifically those facing low, medium, and high information

costs. In particular, we focus on firms with λ1 < λ8 < λ15 taken from the cost distribution.

Figure 1 shows I(pit, p̂it|pit−1), as a function of distinct prior probabilities assigned to the low

volatility state for these three type of firms. As the perceived predictability of the unobserved

target increases, for owners it is now optimal to acquire less information. This behavior is

consistent for all three types of firms. The speed by which total information increases, i.e.,

the learning rate, is however higher for the low-cost group. The cost heterogeneity creates

non-trivial implications for firms’ learning decisions, reflected in the relative distance between

groups. While firms facing the lower costs choose to acquire more information, higher values of

λ’s affect firms’ behavior to the extreme of making medium-cost firms behave similarly as the

higher-cost group.

To minimize conditional variance (equation (4)) firms design their optimal information and

pricing strategies conditioned on the costs they face. Information costs not only disciplines the

search quality, they also force owners to form a probabilistic conjecture about the likelihood of

extreme realization of the target, which affects their pricing decisions.

Let us focus on the simulated information strategies fit(pit, σt, εit|pit−1) for the same three

cost levels λ1, λ8 and λ15. For expository reasons, I compute strategies when price setters believe

there is a 75%, 50% and 25% probability of being in the low volatility state. As the joint
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Figure 1: Total Information
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Notes: the figure presents total acquired information with respect to prior probabilities attached to the economy

being in the low volatility state. The relationship is shown for three different information-costs values, λ1 <

λ8 < λ15.

probability distribution depends on three random variables, I calculate the “predisposition”

fit(pit|pit−1) =
∑

σ

∑
ε fit(pit, σt, εt|pit−1), where the prior beliefs about σt are embedded in

pit−1. This is presented in the left panel of Figure 2. After acquiring new information about

the realization of p̂it, firms update the distribution to form the posterior fit(pit|p̂it, pit−1) from

which the optimal price is finally drawn. This is shown in the right panel of the figure, assuming

a given constant realization for p̂it drawn from the low volatility distribution. The outcome is

represented by the vertical solid line.

Costly information makes owners prone to choose using a smaller set of prices. Independ-

ently of prior beliefs, the predisposition fit(pit|pit−1) degenerates into only two possible prices

for λ8 and λ15. Following equation (11), the decision is to attach zero probability to choosing

a price different from these two. The chosen magnitude of the two possible prices is, however,

relevant as owners are trying to reduce their probability of making large mistakes on average to

the utmost, while being consistent with their beliefs. A perceived higher probability of extreme

realizations of p̂it is reflected in the decision of choosing between more extreme values. For

λ8, the owner slightly modifies her pricing strategy when the probability of being in the high

volatility state is high enough (75%). Although she still allocates more than 60% probability

to the two prices, she is also now choosing prices closer to the mean. The higher probability

of being in σH pushes the owner to acquire further information (Figure 1), which is used to
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disentangle whether the realization of p̂it is close to the average or not. The optimal strategy

is not to waste scarce attention in trying to uncover an extreme realization for the price which

is, even if beliefs are correct, an event with very low probability.

Given the predispositions, the posterior probability for λ8 and λ15 degenerates into the same

two possible values. The relatively higher amount of information acquired by the middle-cost

firm allows it to consistently set a price closer to the true outcome (grey vertical line) on

average. This is clear by looking at the two middle panels of Figure 2. While the two firms

start with the same predisposition, the frequency by which the λ8 firm sets a price closer to

the true value is higher due to its lower information cost. However, none of these firms would

ever set pit = p̂it as the posterior probability is zero at this point. When the uncertainty about

the correct distribution is maximized, i.e., Prob(σL) = 0.5, both the magnitude of the errors

and the price-change dispersion is amplified relative to the other cases. This is also a direct

implication of the belief-driven endogenous attention. This feature of the posterior distribution

is what allows the model to generate some degree of price stickiness.

Cheaper information allows the owner to more precisely distinguish both the realization of

the target-price and its underlying distribution. At the 75% probability the predisposition for

λ1 resembles a normal distribution with almost zero probability assigned to extreme realization

of p̂it. Instead of concentrating all the probability mass in a couple of prices, the firm allocates

the prior probability in this way not to rule out any potential price ex-ante. The shape of the

predisposition allows them to react immediately as new (highly precise) information arrives,

distributing the posterior probability close to the true realization. Around 25% of time the

λ1 firm correctly set pit = p̂it for all three cases. When the probability of σL decreases and

firms collect more information, the distribution changes to attach more probability to extreme

realizations, in exchange with reducing the probability of setting prices closer to the mean.

Even if the firm wrongly attaches a high probability to the high volatility distribution, it is still

able to closely track the optimal price.

Despite the different signal quality, any firm can have misperceived beliefs about the correct

distribution. For example, if the economy currently switches to the low volatility state after

being in the high state for several periods, even a highly informed owner (e.g., λ1) may continue

setting prices thinking that the economy is still in the less predictable state. It would be

enough that the current realization for p̂it is close to the mean to prevent them from noticing

any differences. The rate by which firms uncover a potential new state, which is linked to their

information and pricing strategies, is what brings most of the interesting insights to the problem.

In Appendix 7.4, we present further evidence on the importance of information gathering for

firms despite their different cost levels.
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Figure 2: Firm’s predisposition f(pit|pit−1) and conditional probability f(pit|p̂it, pit−1)
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(f) Posterior Probability |σL = 25%
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4 Delayed learning dynamics

In this section, we show the transition dynamics of the model by simulating an exogenous

change of state. Initially, firms know with certainty the correct state at T = 0, after which they

start updating their beliefs about the current state. We simulate two different paths, where the

economy remains in the low(high) volatility state for 500 periods, and then it switches to the

high(low) state at time T . Keeping the assumed transition of states constant, we simulate 100

economies with 1,500 firms where, as in the calibrations, we allocate the 15 different information

costs uniformly across them. The results are then averages of the variables across economies at

each point in time.

4.1 Firm Level Evolution

Initially we present the results at the firm level by focusing on the same three groups of firms

λ1, λ8, and λ15. Figure 3 shows the evolution of total acquired information, posterior be-

liefs about the high volatility state fit(σH |pt, pit−1), and the average loss function Π̂(pit, p̂it) −
λiI(p̂it, pit|pit−1) for the three types of firms after the state change (vertical dotted line). The

left column shows the implications of switching from low to high while the right column presents

the opposite.

When information is cheap, owners can more easily notice a state change and respond to the

lower predictability of the target by acquiring more information. However, even when the cost

is low, the impossibility to immediately notice the new distribution causes a sluggish reaction

in the rate by which firms increase their information gathering. Imperfect information about

persistent states endogenously generates persistence in beliefs in this setting. As volatility is

expected to rise during economic recessions, the predictions are consistent with the presence

of countercyclical attention, in line with the empirical results of Coibion and Gorodnichenko

(2015).12 Meanwhile, firms facing a higher cost of information does not react at all after the

change of state. Although a non-absorbing Markov Chain governs the transitions, states are

perceived as being absorbing for this group of firms due to their chosen information strategies.

The reasons behind the two different responses (sluggishness and perceived absorbing states)

can be understood by studying the evolution of the posterior probability. While the firm with

the lowest cost can notice the new distribution, it still needs approximately five months to

start attaching more probability to being in σH (left-middle figure). Even though the cost is

relatively small, it still prevents the firm from being entirely sure that the economy is in the high

volatility state, as posterior beliefs do not go beyond 75%. In comparison the same firm needs

only three months to realize the economy is back to the more predictable state (right-middle

12Based on the behavior of professional forecasters, the authors argue that the degree of information rigidities
(a proxy for the total level of inattention) decreased during episodes of higher volatility in the U.S. They interpret
this as an increase in the amount of collected information.
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figure). As firms choose to collect more information when they start noticing the economy is

in the high volatility state, it propitiates a faster reaction after a new state change. The model

then generates asymmetric learning rates as a consequence of costly dynamic information.

The reason why posterior beliefs for the other firms do not change is explained by the

way owners designed their information strategies. As previously discussed (Figure 2), these

firms endogenously choose not to waste attention on noticing any extreme realizations of the

target-price. This decision completely rules out the possibility of noticing that the economy

is in the high volatility state, delivering unresponsive pricing decisions. Certainty about the

true initial state (at T = 0) followed by a prolonged episode of high volatility, is enough to

leave this type of firms in an entirely uncertain situation, attaching an equal probability to

each state (middle-right panel). Firms ended up choosing between two prices that are farther

from the mean, relative to the case where they start in the low volatility state. This leads to

a situation where their pricing decisions are irrelevant when discriminating between the two

possible distributions.

Active learning within this dynamic setting generates disagreement about the correct under-

lying distribution for p̂it, which finally affects both pricing and posterior information decisions.

The empirical evidence also supports the model prediction about time-varying heterogeneous

beliefs across firms, Kumar, Afrouzi, Coibion and Gorodnichenko (2015).13

From the last row of Figure 3, we notice that although neither λ8 nor λ15 firms notice any

state change, the cost still matters as it leads to more precise signals which ultimately affect

their losses.

13Although the paper documents the presence of time-varying beliefs about the inflation rate, we see this as
a valid proxy for the beliefs about an aggregate price index such as p̂it.

20



Figure 3: Firm’s predisposition f(pit|pit−1) and conditional probability f(pit|p̂it, pit−1)
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Notes: the vertical dotted black lines represent a change in the aggregate state. In the left panels, the

economy moves from the low to the high volatility state. The right panels show the opposite transition. The

two top figures present total acquired information I(p̂it, pit|pit−1). The middle figures show the evolution of

the posterior probability of the economy being in the high volatility state while the bottom figures show the

evolution of average loss.
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4.2 Aggregate Evolution

Let us now aggregate pricing decisions across firms. Figure 4 presents the evolution of the

price-change dispersion (given by the standard deviation of ∆pit) and, in the secondary axis,

the evolution of the frequency of price changes. The dynamic for both margins are computed

following the same two simulated transitions. As the economy transits across states, both the

price-change dispersion and the frequency of price changes commove positively, consistent with

the data. Since recessions are episodes where aggregate volatility is expected to rise, the model

can also rationalize the documented presence of counter-cyclical price change dispersion. While

around half of the time prices are not adjusted in the model, we get an average increase of 4.1%

during the high volatility state for the extensive margin, and a reduction of 5.2% for the low

one.

While the response is sluggish and monotonically increasing when the economy enters into

the less predictable state, the opposite transition brings a more immediate and dampened re-

sponse for both series. This is an implication of the asymmetric efforts to collect information

through the transition, which lead owners to disagree about the current and common distribu-

tion of the price-target. While a growing proportion of firms are noticing any new state, the rest

will keep setting prices as if the state has remained constant, affecting the overall price-change

dispersion. More informed firms also adjust their prices more or less frequently depending on

the perceived predictability of the state. The reaction when the economy is back to the more

predictable state is then faster as owners were already receiving more precise signals.

With full information, the volatility of p̂it is σL ≈ 0.07 and σH ≈ 0.15 (Table 2). As most

owners set prices while perceiving each state as being absorbent, the rise of price dispersion

is abated by the presence of Rational Inattentive owners during the low-high transition. Thus

costly information contributes to price stability in this case. However, in the second case, high

information costs distort relative prices preventing dispersion from decreasing. In this case,

actual dispersion is 65% greater relative to the full information scenario. This is relevant due to

the empirical evidence suggesting that the source of countercyclical price dispersion is mostly

driven by agents responsiveness rather than higher volatility of exogenous shocks, Berger and

Vavra (2019).

Through the results, we can directly map the implications of the proposed information-

driven mechanism for price stability. This can have significant consequences for the policy

design. In particular, the scope by which policies can effectively reduce price instabilities

can be very different, depending on agents’ beliefs about the overall state of the economy. In

this case, by initially noticing that the high volatility state is the current state (although its

unconditional probability is significantly lower), it is enough to force a situation where prices

are persistently less stable compared to the actual state of the economy.
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Figure 4: Aggregate Evolution
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Notes: the figure presents the time series evolution of price-change dispersion and the frequency of price changes

(secondary axis). The dotted vertical lines show the moment when the economy switches to the low or high

volatility state respectively.

5 Alternative specifications

The three main ingredients of the model are dynamic information, heterogeneous information

costs, and idiosyncratic shocks to p̂it. In this section, we discuss the model’s ability to replicate

the aforementioned stylized facts after shutting down each of these channels in turn.

5.1 A Static version

The model has a static counterpart version which shares the same structure for p̂it = σtεit, but

with full information about the current distribution. In this version σt is always known with

certainty, meaning that firms acquire costly information to only track the realizations of p̂it.

The problem becomes a standard static RI problem with a quadratic objective and Gaussian

signals. As discussed, in this context the optimal signal takes the parametric form sit = p̂it + εt

with εt ∼ N(0, σ2
ε). Again, the precision of the signal σ−2

ε is chosen by each firm given their

information costs λi. Given the structure of the signal sit, we expect full price flexibility in

this case. With all firms changing their prices in every period, it is simply not possible for the

model to replicate the correlation between the two price margins documented in the data.
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5.2 Homogeneous information costs

Alternatively, we can study the role that heterogeneous costs play in the dynamic learning

model. We will then solve an alternative version of the baseline model, with the only difference

that now all firms are ex-ante identical in terms of their costs λ, i.e., σλ = 0.

5.3 Common price-target

The final alternative specification rules out the presence of idiosyncratic shocks, i.e. p̂it = p̂t =

σtεt. While keeping heterogeneity in costs, now all firms collect information about both the

distribution and the realization of the same target-price. This assumption creates additional

incentives for owners to anticipate what other firms are doing. This feature severely complicates

the model as now owners should form higher-order beliefs within a setting where information is

fully flexible. To rule out this possibility, and for keeping tractability in this case, we assume that

owners operate in segmented markets, Gorodnichenko (2008). All the remaining assumptions

are the same.

5.4 Implications for price change dispersion

To provide a fair comparison, we re-calibrate the parameters of these alternative specifications

(except for the static version) to match the same targeted moments as in the original model.

The results are presented in Table 3.

Table 3: Matched Moments and Alternative Specifications

Targeted moments Data Baseline λi = λ p̂it = p̂t

Frequency 0.11 0.53 0.504 0.53
Kurtosis(|∆p|) 6.40 6.33 5.903 6.23
E(|∆p|) 0.077 0.079 0.076 0.079
E(Dispersion) 0.075 0.083 0.077 0.070

Non-Targeted moments

Fraction small 0.33 0.088 0.012 0.092
Fraction up 0.65 0.499 0.499 0.499
Corr(Dis, Freq) 0.506 0.534 -0.0278 -0.638

Overall, the alternative models are all successful in matching non-trivial moments from

microeconomic data on price setting. Again, we do this without adding any further rigidities to

this decision. However, all of these alternative versions fail to replicate the main two features

of the time series of price changes: the positive correlation between price-change dispersion and

frequency along with the positive reaction of dispersion after a volatility shock.
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Relative to the correlation (last row of Table 3), the impossibility of generating this result

was not obvious ex-ante. Firms with homogeneous information costs may still set different

prices since they are drawn from posterior beliefs. Concerning the version with common p̂t, the

fact that firms still rely on different information costs leads to different information strategies.

However, neither of these two cases can replicate this feature of the data.

Regarding the effect of a volatility shock, Figure 5 shows the evolution of price-change

dispersion over the same two transitions discussed in 4.2. Except for the baseline case, the

reaction of the price-change dispersion is not consistent with the expected effects of a volatility

shock. Even after the recalibration, each state is perceived as absorbing for the homogeneous

costs version. Hence, there is no reaction after either a positive or a negative volatility shock.

When the price-target is common across firms, the dispersion reaction goes in the opposite

direction relative to what is suggested by the data. Owners facing cheaper information reacts

to the lower (greater) predictability of the target by acquiring more (less) information, with this

changing their price updating patterns. As the remaining firms do not notice the state change,

they do not modify their efforts to track the common optimal price. Hence, the overall price

dispersion decreases after a positive shock and increases after a negative one. For completeness,

the evolution of the extensive margin of price changes for the same three versions of the model

is presented in Appendix 7.5.

Figure 5: Price-Change Dispersion - Model comparison
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Notes: the figure presents the evolution of price-change dispersion when the economy moves from the low(high)

volatility state to the high (low) state. The evolution is computed for the baseline model along with the two

alternative specifications: homogeneous costs and the common price-target.
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6 Conclusions

This paper addresses price-setting decisions under dynamic imperfect information acquisition.

Rational Inattentive price setters collect information about an unobserved target-price before

setting prices. Costly information serves two purposes: helping to determine the realization

of the variable along with shedding light about the distribution that generated the target.

The unobserved distribution is time varying to allow for different states of the economy where

aggregate volatility can rise. Information is dynamic and fully flexible as owners choose the

amount of information to acquire as well as how they want to learn about outcomes. This

mechanism generates persistence in beliefs which is crucial to match distinct features of the

data.

While imperfect information is enough to match the dynamic features of the data and can

generate price stickiness, it is still not enough to fully match the fact that prices remain constant

for several periods. A natural extension of this paper is to move closer to a setting that combines

price rigidities with dynamic attention, in the line of Woodford (2009) or Stevens (2019).

As the model’s solution does not depend on any specific objective function or on a particular

parametric distribution for the unobserved shocks, it can be naturally extended to alternative

settings beyond price-setting decisions. Concerning dynamic learning, it is relevant to more

deeply explore the consequences of endogenous asymmetric learning rates over different states

of the economy. While Van Nieuwerburgh and Veldkamp (2006) studied asymmetric responses

due to imperfect information, there is no additional evidence in the context of costly entropy

reduction, where heterogeneous learning rates arise endogenously due to agents’ private efforts.

The main motivation behind this paper was to assess the time-varying implications of costly

information and their relationship with overall price stability. As an unintended consequence

of this friction, and after sufficiently long periods where the economy is in a less predictable

state, prices could end up being much more volatile relative to a case where such rigidity is

muted. The results can be relevant as they show the importance of communicational policies

for monetary authorities, along with the timing of the announcements, to provide less informed

agents with the expected duration of growth or crisis episodes.
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7 Appendix

7.1 Appendix A: profit function approximation

The derivation follows closely Alvarez and Lippi (2010). All firms share the same profit function

Π(Pt, Yt, Ct) = YtP
−η
t (Pt − Ct). Where η > 1 represents the constant price elasticity, Yt is the

intercept of the demand (i.e. it’s a demand shifter) and Ct is the marginal cost at time t. I

assume that Yt and Ct are perfectly correlated, i.e. when costs are high demand is also high. In

order to approximate the objective function as (1), I compute a second order approximation of

Π(Pt, Yt, Ct) around its frictionless price. In the RI context, the frictionless price is the optimal

price under full information P ∗t .

The second order approximation of Π(Pt, Yt, Ct)

Π(Pt, Yt, Ct) ≈ Π(P ∗t , Yt, Ct) +
∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t ) +
1

2

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t )2

Which can be written:

Π(Pt, Yt, Ct)

Π(P ∗t , Yt, Ct)
= 1 +

1

Π(P ∗t , Yt, Ct)

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

P ∗t
(Pt − P ∗t )

P ∗t

+
1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt=P ∗t

(P ∗t )2

(
Pt − P ∗t
P ∗t

)2

Taking the first and second order conditions:

∂Π(Pt, Yt, Ct)

∂Pt
= YtP

−η
t

[
−η
(
Pt − Ct
Pt

)
+ 1

]

∂2Π(Pt, Yt, Ct)

∂P 2
t

= −YtP−η−1
t η

[
−η
(
Pt − Ct
Pt

)
+ 1

]
− YtηP−η−2

t Ct

From the first order conditions, the optimal price is simply a constant mark-up over marginal

cost Pt = η
η−1

Ct. Evaluating the first and second order conditions at the optimal price:

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
P ∗t

= 0

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
P ∗t

= −ηYtCt
(

1

P ∗t

)2(
η

η − 1
Ct

)−η
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The maximized value of the profits:

Π(P ∗t , Yt, Ct) = Yt

(
η

η − 1

)−η
C1−η
t

(
1

η − 1

)

Therefore, the term:

1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt

(P ∗t )2 =
−ηYtCt

(
η
η−1

Ct

)−η

Yt

(
η
η−1

)−η
C1−η
t

(
1

η−1

) = −η(η − 1)

Finally, the second order approximation:

Π(Pt, Yt, Ct)− Π(P ∗t , Yt, Ct)

Π(P ∗t , Yt, Ct)
= −1

2
η(η − 1)

(
Pt − P ∗t
P ∗t

)2

+ o

(
Pt − P ∗t
P ∗t

)

Where I can finally define γ ≡ −1
2
η(η−1), Π̂(pit, p̂it) = log(Π(Pt, Yt, Ct))−log(Π(P ∗t , Yt, Ct)),

pt = log(Pt) and p̂it = log(P ∗t ) as stated in equation (1).

7.2 Appendix B: equivalence of mutual information

Information entropy is a measure about the uncertainty of a random a variable. Consider a

random variable X with finite support Ωx, which is distributed according to f ∈ ∆(Ωx). The

entropy of X, is defined by:

H(X) = −
∑

x∈Ωs

f(x)logf(x)

With the convention that 0log0 = 0. In RI, the acquired amount of information is measured

by entropy reduction. Given the signal st, entropy reduction is measured by mutual information,

which in the context of this dynamic model is:

I(p̂it, st|st−1) = H(p̂it|st−1)− Est [H(p̂it|st)|st−1]

Given the entropy, the target-price p̂it = σtεit ∈ Ωp̂, and the definition for mutual informa-

tion we can prove:
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I(p̂t, st|st−1) = H(p̂t|st−1)− Est [H(p̂t|st)|st−1]

=
∑

s

f(st|st−1)

[∑

σ

∑

ε

f(p̂t|st, st−1)log(f(p̂t|st, st−1))

]

−
∑

σ

∑

ε

g(p̂t|st−1)log(g(p̂t|st−1))

=
∑

s

∑

σ

∑

ε

f(st, p̂t|st−1)log(f(p̂t|st, st−1))−
∑

σ

∑

ε

[∑

s

f(st, p̂t|st−1)

]
log(g(p̂t|st−1))

=
∑

s

∑

σ

∑

ε

f(st, p̂t|st−1)log

(
f(p̂t|st, st−1)

g(p̂t|st−1)

)

=
∑

s

∑

σ

∑

ε

f(st, p̂t|st−1)log

(
f(st, p̂t|st−1)

g(p̂t|st−1)f(st|st−1)

)

Using the notation
∑

x =
∑

x∈Ωx
.

From the second to the third line of the equivalence we rely on the fact that the prior distri-

bution (marginal) is characterized as the sum of the joint probability distribution f(st, p̂t|st−1)

across all potential signals. The final expression is then what is shown in equation (3).

7.3 Appendix C: solution of the dynamic RI problem

In this section, I show how to derive the solution for the dynamic RI problem formally intro-

duced in Section 2.4. Given prior beliefs g(p̂t|pt−1), firms choose the conditional probability

distribution of prices ft(pt|p̂t) (equivalent of choosing f(p, p̂it)) in each point of the simplex

Ωp × Ωσ × Ωε. To simplify notation, I will omit the lagged price conditioning and focus on a

representative firm λi = λ.

Since the prior belief about the volatility distribution mt(σL) is the state variable of the

problem, we can write the Bellman equation:

V (mt(σL)) = max
ft(pt|p̂t)

∑

σ

∑

ε

∑

p

[Π̂(pt, p̂t) + βV (mt+1(σL))]ft(pt|p̂t)gt(p̂t) − λI(p̂t, pt)

Where:

I(p̂t, pt) = ft(pt, p̂it)log

(
ft(pt, p̂t)

gt(p̂t)ft(pt)

)
= ft(pt|p̂t)gt(p̂t)[log(ft(pt|p̂t))− log(ft(pt))]
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The function is also maximized subject to the constraint on the prior (7). The first order

condition of V (mt(σL)) with respect to ft(pt|p̂it):

gt(p̂t)

[
Π̂(pt, p̂it) + βV (mt+1(σL)) + β

[
∂V (mt+1(σL))

∂mt+1(σL)
× ∂mt+1(σL)

∂ft(pt|p̂t)

]]

−λgt(p̂t)[log(ft(pt|p̂t)) + 1− log(ft(pt))− 1]− gt(p̂t)µ(p̂t) = 0

(13)

The last term on the left hand side of equation (13), µ(p̂it), corresponds to the Lagrange

multiplier of the constraint attached to the prior, equation (7).

Embedded in equation (13) is the effect of the current information strategy on posterior

beliefs, ∂mt+1(σL)
∂ft(pt|p̂t) . As discussed, posterior beliefs will later become the prior for t + 1, gt+1 =

mt+1(σ)h(ε). The known i.i.d. structure of the idiosyncratic shocks εt implies that the chosen

information strategy is not going to affect beliefs about this marginal distribution. Moreover,

as stressed by Steiner et al. (2017), we can treat the effects of current information on future

beliefs about the persistent state σt as fixed. The authors shows that a dynamic RI problem

such as the one presented in this paper, is equivalent to a control problem without uncertainty

about persistent states.14 Therefore ∂mt+1(σL)
∂ft(pt|p̂t) = 0 and given gt(p̂t) ≥ 0 and λ > 0, equation

(13) becomes:

Π(pt, p̂t) + βV (mt+1(σL))− µ(p̂t)

λ
= log

(
f(pt|p̂t)
ft(p)

)

exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
exp

(−µ(p̂t)

λ

)
=
f(pt|p̂t)
ft(p)

⇒ f(pt|p̂t) = exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
ft(pt)φ(p̂t)

Where:

φ(p̂t) ≡ exp

(−µ(p̂t)

λ

)
(14)

14The intuition behind the result is the following. In the control problem, while firms have full information
about the current and past history of shocks, they face a trade-off of optimizing their flow utility Π̂(pt, p̂t) against
a control cost given by: Ef(pt|p̂it)[log(f(pt|p̂t))− log(q(pt|p̂t)|zt]. The variable zt stands for the entire history of
past shocks and prices. The cost is determined by the deviation of the final action with respect to some default
action q(pt|p̂it). By relying on properties of the entropy, the paper shows an equivalence between a control
and a dynamic Rational Inattention problem. Thus the inattention problem is solved by initially solving the
control problem with observable states, characterizing the optimal conditional probability for each default rule
f(pt|p̂t), and then choosing q. As states are observable in the control problem, the solution ignores the effects
of information acquisition on future beliefs (i.e., treat them as fixed) when solving the dynamic RI problem.
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Finally, due to the restriction on the prior:

gt(p̂t) =
∑

p′

ft(p
′
t|p̂t)g(p̂t)

=
∑

p′

exp

(
Π(p

′
t, p̂t) + βV (mt+1(σL))

λ

)
ft(p

′
t)φ(p̂t)g(p̂t)

⇒ φ(p̂t) =
1

∑
p′ exp

(
Π(p
′
t,p̂t) +βV (mt+1(σL))

λ

)
ft(p

′
t)

Combining this expression with (14), and adding the conditioning on lagged prices, we get

the expression for the optimal posterior distribution of prices given the unobserved target, (11):

ft(pt|p̂t, pt−1) =
exp [(Π(pt, p̂t) + βV (mt+1(σL|pt))) /λ] ft(pt|pt−1)∑
p′ exp

[[
Π(p

′
t, p̂t) + βV (mt+1(σL|pt))

)
/λ
]
ft(p

′
t|pt−1)

The expression for the value function is then simply given by plugging this expression into

(5):

V (mt(σL)) = λ
∑

σ

∑

ε

∑

p

f(pt, p̂t)

(∑

p

exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
f(pt)

)

= λE

[∑

p

exp

(
Π(pt, p̂t) + βV (mt+1(σLs))

λ

)
f(pt)

]

7.4 Appendix D: information bounds

The solution of the model, and in particular its parameters, calls for validation in the sense that

the overall process of actively seeking costly information must always be desirable for firms if

they are going to do so. We can then compare the outcomes under RI relative to two extreme

cases: Full information and no information. Under full information (FI) the cost of acquiring

information is λi = 0 for all firms, while under no information (NI), the cost λi → ∞. In

the former case, firms perfectly track the optimal price p∗it, whereas in the latter the absence

of information lead firms to rationally set their prices equal to the unconditional mean of the

target, p∗it(NI) = E[σtεit] = E[σt]E[εit] = 0.

These extreme cases introduce two normative bounds for the solution of the RI model.

Based on objective (1), the static profit loss under FI is π̂FIt = 0, while π̂NIt = γσ2
j , where

j = L,H depending on the realization of the state. In the case of RI, π̂RIt = γ(p∗it− p̂it)2 which
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varies according to the stochastic choice of p∗it. In this case, the agent decides to use part of his

mental capacity to uncover the realization and the distribution of the price-target. Acquiring

costly information is always desirable if it loss is bounded within these two extreme cases.

0 = π̂FIt < π̂RIt < π̂sNIt = γσ2
j (15)

The following table shows the average loss under RI for all 15 different firm types and also

the ratio between the loss under RI relative to NI. The agent is always better off by acquiring

costly information if this ratio is less than one. This is confirmed by the results, which holds

independently of being in either state. However, the gains are notably higher when the economy

is in the more volatile state.

Table 4: Information Bounds

Low Volatility High Volatility
Profit Loss RI RI/NI RI RI/NI

λ1 0.012 0.187 0.014 0.061
λ2 0.024 0.373 0.062 0.271
λ3 0.032 0.495 0.067 0.293
λ4 0.037 0.573 0.072 0.313
λ5 0.041 0.633 0.075 0.329
λ6 0.045 0.694 0.078 0.342
λ7 0.046 0.716 0.083 0.362
λ8 0.047 0.735 0.088 0.383
λ9 0.050 0.777 0.090 0.395
λ10 0.052 0.812 0.093 0.406
λ11 0.059 0.919 0.095 0.416
λ12 0.058 0.905 0.100 0.436
λ13 0.059 0.919 0.100 0.436
λ14 0.059 0.923 0.110 0.481
λ15 0.059 0.925 0.118 0.517

7.5 Appendix E: Evolution of alternative models
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Figure 6: Price-Change Frequency - Model comparison
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Notes: The figure presents the time series evolution of price-change dispersion and the frequency of price changes

(secondary axis). The dotted lines show the time frame when the economy is in a recession.
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