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Abstract

This paper studies whether suspensions intended to provide a time-out for agents
to digest incoming information attenuate runs, under the assumption that agents
overreact to news and need time to properly process it. To do so, I embed diagnostic
expectations into a standard global game model of runs. I show that during bad times,
when bad public news arrives and/or investment returns are low, such policy actually
amplifies runs, even in cases where almost all investors are receiving negative news
and temporarily overreacting to it. During good times, the opposite result arises.
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1 Introduction
Processing incoming news is a difficult task for humans and requires time. Recent work
points out that even professional forecasters systematically overreact to incoming news,
interpreting negative news as worse than they really are, and being overly optimistic
after receiving positive news, but those distortions tend to vanish as time passes (Bordalo
et al., 2019, Bordalo, Gennaioli and Shleifer, 2022). Those patterns can be explained by
diagnostic expectations models of belief formation, as formalized in Bordalo et al. (2016).
The tendency of agents to overreact to news can explain why commentators often label
some distress events in financial markets—such as bank runs, asset market runs and runs
on mutual funds—as the result of “irrational panics”.1
This initial overreaction could help justify temporary suspensions that are prevalent

in financial markets after large shocks, such as: tradings halts (also referred to as circuit
breakers), which are used by virtually every stock exchange; suspension of flows in mutual
funds, which were prevalent in Europe after the COVID-19 shock; or the freezing of
crypto accounts, which were common after the run on Terra Luna.2 Defendants of such
suspensions often point out that agents need time to properly digest incoming news, as
to avoid panicking and rushing to conclusions, and temporarily prohibiting agents from
acting could help in that dimension.
Those behavioral arguments are well summarized by Kodres (2020) when discussing

the historical context in which circuit breakers were implemented in the US: “The circuit
breaker idea was grounded in the notion that a time-out could allow participants to clear
their heads and that a panic could be quelled.” This resonates the view of Nicholas
Brady and Robert Glauber—two prominent participants of the Brady Comission, whose
recommendations were largely responsible for the implementation of those mechanisms
in the US—who claim that trading halts can “give participants a time-out to take a deep
breath, evaluate the situation and perhaps interrupt the sense of panic. With a brief time to
think again, perhaps some sellers will withdraw to the sidelines and value buyers will enter
the market” (Brady and Glauber, 2020).
Despite the prevalence of suspensions intended to give financial markets participants
1This narrative differs from the one in which runs are viewed as the result of “rational panics”, which

usually refers to self-fullfiling crises that happen among fully rational investors in settings with multiple
equilibria, such as those in the classic work of Diamond and Dybvig (1983).
2Of course, there are other considerations that are used to justify such suspensions, such as liquidity

issues.
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a time-out, mostly after negative shocks, there is a lack of formal treatments of the
behavioral arguments often used to justify them. This paper provides such formal treat-
ment, analyzing whether suspensions can attenuate runs in financial markets, under the
assumption that agents’ beliefs need time to revert toward rationality after the arrival
of news. I start by embedding a diagnostic expectations model of belief formation—in
which agents overreact to both good and bad news (Bordalo, Gennaioli and Shleifer,
2018)—into a global game similar to those used to study different types of runs, such as
asset market runs (Morris and Shin, 2004), bank runs (Goldstein and Pauzner, 2005) and
mutual fund runs (Chen, Goldstein and Jiang, 2010). Then, I use the model to investigate
under which circumstances suspensions that temporarily prohibit agents from acting are
optimal for an authority that wishes to minimize the size of a run, considering that agents
can better process incoming information as time passes.
The main result of the paper is that during bad times, when bad public news arrives

and/or expected investment returns are low, suspensions amplify runs, not attenuate them.
This happens even in cases where most agents are receiving negative news and temporarily
overreacting to it, and even though the only channel through which suspensions operate
in the model is by curbing investors’ overreaction to incoming news. Hence, what common
wisdom claims to be a benefit of suspensions—allowing agents to better digest information
after the arrival of bad public news—can actually be a cost in a context of runs. In fact,
suspensions can only attenuate runs during good times, in which runs are already less
severe.
The result is driven by an endogenous mismatch between the effect of suspensions

on the average and marginal investor. During bad times, suspensions can indeed induce
investors to make decisions under much more optimistic beliefs, on average. However,
precisely when that happens, they tend to worsen the beliefs of the agents that happen
to matter in equilibrium, the marginal investors (for reasons to be discussed).
I now further detail the model ingredients and the intuition behind the main results.

Amodel of runs with diagnostic investors. I start from the standard global gamemodel of
runs of Morris and Shin (2000). A continuum of investors have an investment of one dollar
and must decide whether to cancel (run) or renew it. Canceling the investment imposes
a negative externality on investors that stay: The payoff of renewing the investment is
decreasing in the proportion of investors that run. The payoff of renewing also depends
on ex ante expected asset returns, which are common knowledge, and on a fundamental
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shock that is not directly observed by agents.
Investors have a prior about the fundamental shock and receive two pieces of informa-

tion: a private and a public signal. After observing both signals, investors do not update
their beliefs according to Bayes Rule, but instead form their posterior using diagnostic
expectations, as in Bordalo, Gennaioli and Shleifer (2018). Agents observing positive
(combined) signals then become overly optimistic about the fundamental shock, while
agents observing negative news become overly pessimistic. There is a parameter that
measures how much agents overreact to information. If that parameter equals zero,
agents are rational and the model is the same as in Morris and Shin (2000).
I first show under which conditions uniqueness of equilibrium is guaranteed. Diagnos-

tic expectations play in favor of guaranteeing a unique equilibrium. If the equilibrium
is unique under rational expectations, then it is unique under diagnostic expectations,
but the converse does not hold: under some parameters, the equilibrium is not unique
under rational expectations, but is so under diagnostic expectations. In equilibrium,
agents receiving good (bad) news are not only overly optimistic (pessimistic) about the
fundamental shock, but also about the decision of other investors.

Temporary suspensions. The model is then extended to include a subsequent stage
where expectations revert back to rationality. Time is divided in three dates. At date 1,
new information (public and private signals) arrive, and agents update their beliefs using
the diagnostic model of belief formation. At date 2, sufficient time to process incoming
information has passed, and agents’ expectations become rational.3 At date 3, agents’
choices and fundamentals become common knowledge and payoffs realize.
In the absence of a suspension, a terminal where agents can send run/renew orders

opens at the beginning of date 1 and closes at the end of date 2. Agents derive some extra
utility from moving early (date 1) rather than late (date 2), which reflects information
processing costs, attention frictions or different types of early mover advantages. Date
1 investors find it optimal (using their distorted beliefs) to run or renew right after the
arrival news, even when their future (rational) self would choose something different.
The equilibrium thus captures the idea of “irrational panics” as an equilibrium outcome:
Agents receive some news, rush to conclusions and act on this information, even though
their future selves may regret such choice.
3It is not critical that expectations fully revert back to rationality, only that the belief distortion is lower

at date 2. See Section 6.3.
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If an authority implements a suspension, investors are prohibited from making deci-
sions at date 1, while they are still diagnostic. Hence, a suspension guarantees agents will
decide when they have fully processed the incoming information. The authority observes
the public signal, and wishes to minimize the expected number of agents that run. Delib-
erately, it is assumed that the only effect through which suspensions affect investors is by
forcing them to “take a deep breath” before acting, mitigating their irrational overreactive
behavior. Other potential costs/benefits of suspensions (e.g., liquidity considerations) are
ignored, as to avoid confounders and to be transparent about whether the behavioral
arguments often invoked as a benefit of such policies are justified.
I show that the arrival of bad news (low realizations of the public signal) tends to

make a suspension amplify runs, and it is so precisely because such policy helps to curb
overreaction. Suspensions amplify runs even in scenarios where most agents are receiving
negative news and overreacting to it. Also, when ex-ante investment returns are low,
suspensions also make runs more severe. Hence, suspensions are not desirable in bad
times, and in fact can only prevent run behavior in good times (when the realization of
public signals and/or ex-ante returns are high, and hence runs are less severe).
How can a suspension amplify runs following the arrival of bad news? After very bad

public news arrives, it is likely that most investors have received negative news overall,
after combining their private and public information. Hence, given that they overreact
to negative news initially, imposing a suspension induces agents to be more optimistic
at the time they decide, on average. However, I show that what matters is not how such
policy affects average beliefs, but how it affects the beliefs of agents that are close to
indifference in equilibrium, the marginal investors, which are the ones more prone to
changing their decision. The identity of the marginal investors is an equilibrium object.
Who are they when bad public news arrives?
Due to coordination motives, public signals play a critical role in the model, since

they anchor investors’ expectations about the behavior of other investors. After very bad
public information arrives, investors become very prone to running, even if they receive
good private information that offsets it. More precisely, for a given level of expected
fundamentals, an investor is more prone to running if she observed a low public signal
and a high private signal than if the converse holds. This is because the former is more
pessimistic about what other investors think (higher-order beliefs). Hence, in such bad
public news scenario, agents that are close to indifference between running or not are
agents that overall received positive news, and a suspension makes them stop being overly
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optimistic at the time they decide, amplifying runs. Therefore, while such policy tends to
improve average beliefs at the time decisions are taken, it worsens the beliefs of the (few)
agents that matter.
A similar intuition explains why suspensions amplify runs when ex-ante returns are

low, since in such cases investors have high incentives to run, and hence agents close to
indifference are those observing positive news overall.
I also discuss how the quality of the arriving information interacts with the effects

of suspensions. As long as coordination motives are sufficiently relevant—meaning that
investors do not have a dominant action before observing their signals—the precision
of the arriving information does affect the ex-ante probability of a suspension being
optimal. In such case, for low ex-ante returns, more precise public information increases
the probability of a suspension being desirable, and reduces it for high ex-ante returns.
The opposite is true regarding the effect of the precision of private information.

Extensions. I show that the main results remain unchanged under three alternative mod-
eling assumptions. First, I present the case where investors’ payoffs are a discontinuous
function of the proportion of agents that run and of the fundamental, as usual in games
of regime change. Second, I relax a parametric assumption that guarantees equilibrium
uniqueness, assuming that investors always play according to some extreme equilibrium
whenever there is multiplicity. Third, I present the case where expectations only partially
revert toward rationality.

Related literature. This paper is mainly related to two strands of literature. First, it
relates to the global games literature studying bank runs, market runs and coordination
games in general (for instance, Carlsson and Van Damme, 1993, Morris and Shin, 1998,
Morris and Shin, 2004, Goldstein and Pauzner, 2005, Sakovics and Steiner, 2012). Second,
it relates to the literature that formalizes and incorporates diagnostic expectations in
different contexts (Gennaioli and Shleifer, 2010, Bordalo, Gennaioli and Shleifer, 2018,
Bordalo et al., 2019, Bordalo et al., 2021, Bianchi, Ilut and Saijo, 2022, Maxted, 2023
to name a few). The novel contribution here is to embed diagnostic expectations into a
standard model of runs, and use it to study suspensions.
More broadly, this paper is also related to the literature studying different types of

suspensions in financial markets (examples include Gorton, 1985, Kodres and O’Brien,
1994, Hautsch and Horvath, 2019), contributing to the debate by theoretically analyzing
the behavioral arguments often used to defend those policies during runs.
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Layout. Section 2 incorporates diagnostic expectations into a model of runs. Section
3 presents the equilibrium. Section 4 augments the model to allow beliefs to revert
to rationality after some time. Section 5 studies the effects of temporary suspensions.
Section 6 discusses extensions of the main model. Section 7 concludes. All proofs are in
Appendix A.

2 A Model of Runs with Diagnostic Investors
I start by modeling the decision of agents to run on some investment when they do not
update their beliefs using Bayes rule, but instead have diagnostic expectations, as in
Bordalo, Gennaioli and Shleifer (2018). In Section 4, I then propose a simple extension of
this setting to capture the idea that agents’ beliefs converge toward rational expectations
as time passes, as commonly assumed and documented in the diagnostic expectations
literature, which then allows me to study the role of temporary suspensions. The model
presented in this section is the global game model of runs of Morris and Shin (2000),
augmented with diagnostic expectations.

Investors and payoffs. A continuum of risk-neutral investors indexed by 𝑖 ∈ [0, 1] must
decide whether to cancel or renew an investment. Canceling is labeled as action 𝑎𝑖 = 0
and also referred to as the decision to “run”. Renewing is labeled as 𝑎𝑖 = 1. Investors that
run recover the dollar amount invested initially, and hence their payoff is normalized to
one. The payment received by investors that renew their investment depends positively
on a fundamental shock (𝜂) and negatively on the proportion of agents that run (ℓ). For
tractability, I assume that the payoffs of investors that renew are linear, as in the rollover
game of Morris and Shin (2000), and hence are given by

𝑣 (𝜂, ℓ) = 𝑧 + 𝜂 − 𝛾ℓ, (1)

where 𝛾 > 0 and 𝑧 ∈ ℝ.4 Hence, investment returns are the sum of the ex-ante returns
(𝑧) and the fundamental shock (𝜂), minus the externalities caused by those that run
(𝛾ℓ). When 𝑧 is high (low), we say that the economy is facing good (bad) times from an
ex-ante perspective.
4In Section 6.1, I show that the main results hold in a setting where 𝑣 (𝜂, ℓ) is a step function, as in

games of regime change.
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The key economic force captured by the proposed payoffs is that of strategic com-
plementarities: An investor’s incentive to run is increasing in the number of investors
that run. Strategic complementarities form the basis of traditional models of runs. In
the context of asset market runs (events in which many investors decide to suddenly
sell an asset), strategic complementarities can arise due to traders’ loss limits (Morris
and Shin, 2004), relative performance concerns (Morris and Shin, 2016), balance sheet
constraints and liquidity shocks (Eisenbach and Phelan, 2023) or due to sufficiently strict
margin requirements (Bernardo and Welch, 2004). In the context of bank runs, strategic
complementarities are a consequence of the costs early liquidation imposes on banks’
assets (Morris and Shin, 2000, Goldstein and Pauzner, 2005). In the context of runs on
mutual funds, it arises when the net asset value of a fund does not perfectly reflect the
fire-sale penalties triggered by redemptions (Chen, Goldstein and Jiang, 2010). In the
context of cryptocurrencies it can also be reinforced by transaction motives (Sockin and
Xiong, 2022).

Information. The fundamental shock 𝜂 (or fundamental, in short) is not observed and
is drawn from a normal distribution with mean zero and variance 1/𝜏0. Hence, agents
share a common prior 𝜂 ∼ 𝑁 (0, 1/𝜏0). Each agent receives two pieces of news before
deciding whether to run: the realization of a public signal 𝑦 that is observed by everyone,
and the realization of a private signal 𝑥𝑖. Each signal consists of the true fundamental
plus some noise:

𝑥𝑖 = 𝜂 + 𝜀𝑖,

𝑦 = 𝜂 + 𝜔,

where 𝜀𝑖 ∼ 𝑁 (0, 1/𝜏𝑥) and is iid across agents, 𝜔 ∼ 𝑁
(
0, 1/𝜏𝑦

)
, and 𝜀𝑖 and 𝜔 are

independent. The parameters 𝜏𝑥 , 𝜏𝑦 and 𝜏0 are referred to as the precision of the signals
and the prior. Throughout the paper, I often use 𝜙 (·) and Φ (·) to denote the standard
normal density and distribution functions, respectively.

Beliefs updating. The only relevant deviation I make from a standard model of runs is
that agents in my setting do not update their beliefs about the fundamental 𝜂 using Bayes
Rule, but instead, have distorted beliefs. I follow Bordalo, Gennaioli and Shleifer (2018)
and Bordalo et al. (2019) and assume that investors have diagnostic expectations.
Let agents’ beliefs after observing signals 𝑥𝑖 and 𝑦 be represented by a pdf 𝑓 𝜃 (𝜂 | 𝑥𝑖, 𝑦),

and let 𝑓 (𝜂 | 𝑥𝑖, 𝑦) be the conditional pdf given by Bayes Rule. Following Bordalo, Gen-
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naioli and Shleifer (2018), I assume that:

𝑓 𝜃 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦) = 𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦) R (𝜂, 𝑥, 𝑦)𝜃 𝐶, (2)

where
R (𝜂, 𝑥, 𝑦) = 𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦)

𝑓 (𝜂 |𝑥𝑖 = 0, 𝑦 = 0)
is called the representativeness index, 𝜃 ≥ 0 denotes the strength of probability dis-
tortions, and 𝐶 is a constant that guarantees the distorted density 𝑓 𝜃 (·) integrates to
one. Throughout the paper, I often use hats to indicate a specific realization of a random
variable, as above.
One of the key ideas behind formula (2) is that agents have limited and selective

memory, and that “representative types” come more easily to mind. To illustrate, suppose
agents are evaluating the probability of bankruptcy of a firm in the next year. The firm
discloses a financial report saying revenue fell relative to last year. To estimate how such
report affects the probability of bankruptcy, investors try to recall whether other firms
that reported a fall in revenue in the past went bankrupt in the subsequent year. However,
due to limited memory, the disclosure of some reports is forgotten by investors when
doing these mental calculations. Due to selective memory, investors are less likely to forget
the disclosure of reports of firms that later went bankrupt, so the events in which a firm
went bankrupt after disclosing a fall in revenue are oversampled in investors’ minds. That
is, investors can better recall situations that are more representative of bankruptcy. As a
result, investors think the disclosure of such report increases the probability of bankruptcy
more than it actually does, they overreact to negative news. If given more time to process
the information, investors should be able to better recall the events they initially forgot,
reducing the oversampling problem. A similar logic implies that investors have a tendency
to overreact to positive news, for instance, overestimating the probability of a startup
firm being the next Google after observing positive earnings reports. See Tversky and
Kahneman (1983) and Bordalo, Gennaioli and Shleifer (2018) for further discussion of
those concepts.
Equation (2) is standard in the literature, because it captures well those effects in a

tractable manner. Whenever positive news arrives, say 𝑦 > 0 and 𝑥𝑖 > 0, the representative
index R is above 1 for 𝜂 > 0 and below one for 𝜂 < 0. Hence, compared to a Bayesian
agent, diagnostic agents put more weight on positive realizations of 𝜂 and lower weight on
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negative realizations, overreacting to positive news. As positive signals are representative
of positive realizations of 𝜂, agents overweight the association between positive values of
the signals and positive values of the fundamental in their judgment, and the opposite is
true for negative signals.

Strategies and equilibrium definition. Since agents are not rational in my setting, I
cannot rely on standard definitions of equilibrium, such as Perfect Bayesian Equilibrium
(PBE). To deviate as little as possible from the restrictions imposed by PBE, I propose an
equilibrium definition that would be equivalent to PBE if agents updated their beliefs
about the fundamental 𝜂 using Bayes Rule and not the diagnostic rule (2).
A strategy for agent 𝑖 is defined as a measurable function 𝑔𝑖 (𝑥𝑖, 𝑦) ↦→ {0, 1}, that is,

it is a map from the observed signals 𝑥𝑖 and 𝑦 to actions 𝑎𝑖 ∈ {0, 1}. A strategy profile is
a collection (𝑔𝑖) 𝑖∈[0,1] . For a given realization of the fundamental 𝜂 and fixing a strategy
profile (𝑔𝑖) 𝑖∈[0,1] , investors can perfectly anticipate the proportion of investors that will
run, which is given by

ℓ̃ (𝜂) =
∫ 1

0

∫
X𝑖

√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥 − 𝜂)) 𝑑𝑥 𝑑𝑖, (3)

where X𝑖 = {𝑥 : 𝑔𝑖 (𝑥, 𝑦) = 0} denotes the set of private signals for which an agent runs
(which depends on the realization of 𝑦). However, agents do not update their beliefs
about 𝜂 according to Bayes Rule, but according to (2). Hence, their distorted expected
payoff of renewing is given by

𝑉𝜃 (𝑥𝑖, 𝑦) =
∫ ∞

−∞

(
𝑧 + 𝜂 − 𝛾ℓ̃ (𝜂)

)
𝑓 𝜃 (𝜂 | 𝑥𝑖, 𝑦) 𝑑𝜂. (4)

If 𝜃 = 0 the expression above is simply agents’ expected payoff of renewing the investment,
after observing the signals and taking as given the strategies of others. With 𝜃 > 0, agents
have distorted beliefs about the fundamental, which also leads them to distort their
beliefs about the proportion of other agents running. For instance, if the distortion leads
agents to be too optimistic about 𝜂 and agents renew only if they observe signals above a
threshold, then diagnostic beliefs lead agents to overestimate the mass of agents renewing,
as their optimistic belief about 𝜂 implies they are too optimistic about others’ signals.
Having defined how agents distort their beliefs when computing their expected payoffs,

the definition of equilibrium follows naturally.
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Definition 1. A strategy profile 𝑔𝑖 : (𝑥𝑖, 𝑦) ↦→ {0, 1}, for all 𝑖 ∈ [0, 1], is a Diagnostic
Equilibrium if 𝑔𝑖 (𝑥𝑖, 𝑦) = 1 implies𝑉𝜃 (𝑥𝑖, 𝑦) ≥ 1 and 𝑔𝑖 (𝑥𝑖, 𝑦) = 0 implies𝑉𝜃 (𝑥𝑖, 𝑦) ≤ 1,
taking as given other agents’ strategies.

In other words, a Diagnostic Equilibrium is a Nash Equilibrium of the game where
the payoff of renewing is given by 𝑉𝜃 (𝑥𝑖, 𝑦) in (4). If 𝜃 = 0, the definition above is then
equivalent to that of a Perfect Bayesian Equilibrium in my setting.
A notation remark: In what follows, 𝔼𝜃 [𝜂 |𝑥𝑖, 𝑦] represents the expectation of 𝜂 for an

agent with beliefs given by (2), that is, 𝔼𝜃 [𝜂 |𝑥𝑖, 𝑦] =
∫ ∞
−∞ 𝜂 𝑓 𝜃 (𝜂 | 𝑥𝑖, 𝑦) 𝑑𝜂. 𝔼 [𝜂 |𝑥𝑖, 𝑦] is

reserved for the expectation of a rational agent: 𝔼 [𝜂 |𝑥𝑖, 𝑦] =
∫ ∞
−∞ 𝜂 𝑓 (𝜂 | 𝑥𝑖, 𝑦) 𝑑𝜂.

3 Equilibrium
Before computing the equilibrium, I characterize the distribution of investors’ beliefs
conditional on their signals:

Lemma 1. After observing signals 𝑥𝑖 and 𝑦, investors believe 𝜂 is normally distributed with
mean 𝜇1 (𝑥𝑖, 𝑦) and variance 1/�̃�1, where

𝜇1 (𝑥𝑖, 𝑦) =
(1 + 𝜃) (

𝜏𝑥𝑥𝑖 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦
, (5)

�̃�1 = 𝜏0 + 𝜏𝑥 + 𝜏𝑦. (6)

As usual, normality of the information structure is inherited by agents’ diagnostic
beliefs. Combined with the assumption of linear payoffs, this makes the analysis much
more tractable. Note that a Bayesian agent (𝜃 = 0) updates upwards his expectation of
the fundamental, 𝜇1 (𝑥𝑖, 𝑦), if and only if the weighted sum 𝜏𝑥𝑥𝑖 + 𝜏𝑦𝑦 of the private and
public signal is above zero. Diagnostic agents (𝜃 > 0) also do so, but they overreact: After
observing good or bad combined signals they change their beliefs more.
Next proposition characterizes the equilibrium.

Proposition 1. Suppose that the following condition holds:

𝛾
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥
1 + 𝜃

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦

𝜏𝑥
(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

) <
√
2𝜋. (7)
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Then, the model has an essentially unique equilibrium, in which agents renew if 𝑥𝑖 > 𝑥∗ and
run if 𝑥𝑖 < 𝑥∗, where 𝑥∗ is the unique solution to

𝑧 + 𝜇1 (𝑥∗, 𝑦) − 𝛾Φ

(√︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥
(𝑥∗ − 𝜇1 (𝑥∗, 𝑦))

)
= 1. (8)

Provided the equilibrium is unique, investors play a cutoff strategy: they renew if
their signal is above a cutoff, and run if it is below it. I say that the equilibrium is
“essentially” unique because there is still multiplicity when agents observe a signal 𝑥𝑖 = 𝑥∗,
in which case they are indifferent between both actions. The left-hand side of (7) is
strictly decreasing in 𝜏𝑥 , and that condition is satisfied as 𝜏𝑥 becomes sufficiently large.
Hence, as is usually the case in global games, if agents’ private information is sufficiently
precise, the equilibrium is unique. If 𝜃 = 0 and 𝛾 = 1, condition (7) boils down to the
same condition for uniqueness found in Morris and Shin (2000).
Interestingly, (7) also depends on the strength of diagnostic expectations, 𝜃. One

can verify that the left-hand side of (7) is strictly decreasing in 𝜃, and hence diagnostic
expectations play in favor of guaranteeing uniqueness. In fact, one can easily construct
an example where the equilibrium is not unique with 𝜃 = 0 but it is so for a sufficiently
large 𝜃. In what follows, to rule out multiplicity, I assume that (7) holds even if 𝜃 = 0,
that is,

𝛾
(
𝜏0 + 𝜏𝑦

) √︄ 𝜏0 + 𝜏𝑥 + 𝜏𝑦

𝜏𝑥
(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

) <
√
2𝜋. (A1)

This type of assumption is standard in global games and delivers tractability. Still, in
Section 6.2, I show that the main results survive if (A1) is violated and one focuses on
extreme equilibria.

4 Reversion to Rationality
I now extend the model of Section 2 to capture the idea that, following the arrival of
news, investors’ beliefs revert back to rational expectations as time passes. This is a
common assumption in the diagnostic expectations literature and is consistent with data
on expectations (Bordalo et al., 2019).
I divide time in three dates, 1, 2 and 3. Date 1 is interpreted as the date at which new

information arrives: Investors start date 1 holding the same prior and receive signals 𝑥𝑖
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and 𝑦 about 𝜂 as in Section 2, then updating their beliefs using the diagnostic rule (2).
Date 2 is interpreted as the date at which investors’ beliefs revert back to rationality after
the arrival of news, and hence they hold beliefs about 𝜂 that are consistent with Bayes
Rule.5 A terminal to send cancel/renew orders opens right after signals are received
at date 1 and closes at the end of date 2. At date 3, agents’ choices and fundamentals
become common knowledge and payoffs realize. The timeline is summarized below.

Nature
draws η

Agents receive signals xi
and y and update beliefs

using diagnostic rule

Terminal to send
cancel/renew
orders opens

Beliefs revert to
rationality

Investors’ choices
are observed and

payoffs realize

Terminal to send
cancel/renew
orders closes

Date 1 Date 2 Date 3
Time

Figure 1: Timeline with reversion to rational expectations.

We can frame the problem of investors at date 1 as that of choosing between three
actions: cancel (0), renew (1) or wait (𝑊). If an investor at date 1 chooses to wait, then
at date 2 the investor must finally decide whether she will run or renew. If an investor at
date 1 chooses to run or renew, then there is no decision to be made at date 2.
A strategy for investor 𝑖 at date 1 is defined as a map 𝑔1,𝑖 (𝑥𝑖, 𝑦) ↦→ {0, 1,𝑊}. A

strategy for investor 𝑖 at date 2, after choosing𝑊 at date 1, is a map 𝑔2,𝑖 (𝑥𝑖, 𝑦) ↦→ {0, 1}.
The proportion of agents that run at either of the two dates is still denoted by ℓ, and for
a given 𝜂, it is still given by (3), but now with the set of private signals that lead investors
to run given by X𝑖 ≡

{
𝑥 : 𝑔1,𝑖 (𝑥, 𝑦) = 0

} ∪ {
𝑥 : 𝑔2,𝑖 (𝑥, 𝑦) = 0 and 𝑔1,𝑖 (𝑥, 𝑦) = 𝑊

}
, to

capture that agents can run at dates 1 or 2.
I assume that investors that wait pay a cost 𝛿 > 0, which captures early mover

advantages. This cost can reflect an information processing cost, due to the fact that
investors who have not made a decision at date 1 will remain processing the information
they received. It could also reflect an attention friction: Investors who do not decide
at date 1, right after the arrival of news, may forget to do so afterwards with some
probability, which is costly.6
Beyond the utility cost of waiting, the final payment received by investors is the same:
5The assumption of full reversion to rationality is made only for expositional purposes. In Section

6.3, I show that the main results remain unchanged if expectations only partially revert toward rational
expectations, that is, if agents still hold diagnostic beliefs at date 2, but with a reduced 𝜃.
6This cost is not critical, but simplifies the exposition by breaking indifference in some cases. If 𝛿 = 0 all

the results regarding the optimality of suspensions still hold.
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Investors that run get 1 and those who renew get 𝑣 (𝜂, ℓ) in (1). However, the way they
compute their expected payoffs depends on the date at which they are deciding: At date
1, agents compute their expected payment of renewing using (4), while agents at date 2
compute it according to

𝑉 (𝑥𝑖, 𝑦) =
∫ ∞

−∞

(
𝑧 + 𝜂 − 𝛾ℓ̃ (𝜂)

)
𝑓 (𝜂 | 𝑥𝑖, 𝑦) 𝑑𝜂. (9)

Note that investors at date 1 play a game with their future selves at date 2, since they
have a different payoff function. Hence, treating investor 𝑖 playing at date 1 as one player,
and investor 𝑖 playing at date 2 after observing wait from its date-1 counterpart as a
different player, we can define an equilibrium as a Nash Equilibrium of the game where:
(i) date-1 players’ payoffs are given by (4) if they play renew, 1 if they play run, and if
they play wait, payoffs are given by (4) minus 𝛿 in case their date-2 self renews, and by
1 − 𝛿 if their date-2 self runs; (ii) date-2 players’ payoffs, after observing wait, are given
by (9) minus 𝛿 if they renew and 1 − 𝛿 if they run.7 Alternatively, one could define the
equilibrium as one where each date-1 player is naive and does not anticipate his date-2
self will have a different payoff, and all the results that follow would be unchanged.
The next proposition characterizes the equilibrium in this game.

Proposition 2. In equilibrium, the cancel/renew decision is taken at date 1 and investors
behave as in Proposition 1: They renew if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, where 𝑥∗ is given by
(8).

This result is straightforward. Date-1 investors can either make a decision today or
delegate it to a future self that has a different utility from theirs, further incurring a cost
𝛿. Hence, waiting at date 1 is strictly dominated under the beliefs of date-1 investors.
The model and the equilibrium presented here capture well the notion that agents can

irrationally panic after the arrival of news, possibly taking actions that they would regret
if they kept processing the incoming information—that is, choosing something at date
1 that goes against the will of their date-2 selves. For some parameters and realization
of the signals, in equilibrium it happens that a date-1 agent runs when her date-2 self
would renew. But it is also true that the opposite can happen for a different set of signals
and parameters: a date-1 investor renews when her date-2 self would like to run. This is
7I could define it as a Subgame Perfect Equilibrium as well, given the sequential play of date-1 and

date-2 selves, but it is equivalent to Nash Equilibrium in this setting.
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because diagnostic agents overreact to both positive and negative news.
The discussion above suggests that a regulator may, in some circumstances, benefit

from preventing agents from acting while they did not have enough time to fully come
to their senses with respect to the incoming information. Next, I analyze under which
circumstances temporarily suspending the receipt of new orders attenuates runs.

5 Temporary Suspensions
I now add an authority to the model of Section 4, who can prohibit agents from making
decisions at date 1. In other words, the authority can suspend the terminal at date 1, thus
forcing agents to decide only when their expectations have reverted back to rationality.
That is, the authority can force investors to choose waiting at date 1. By now, it should
not be surprising that such an authority can effectively decide whether agents’ decisions
will be governed by diagnostic or rational expectations. Figure 2 shows the timeline when
a suspension is in place.

Nature
draws η

Agents receive signals xi
and y and update beliefs

using diagnostic rule

Terminal to send
cancel/renew
orders opens

Beliefs revert to
rationality

Investors’ choices
are observed and

payoffs realize

Terminal to send
cancel/renew
orders closes

Date 1 Date 2 Date 3
Time

Figure 2: Timeline when a suspension is in place.

Such policy is akin to classical trading halts in stock markets, mutual fund suspensions
observed during the COVID-19 crisis, or the recent temporary suspension of crypto
platforms, which froze investors’ accounts.
The authority has no information other than the prior and the public signal, and its

objective is to minimize the expected number of agents that run. Since I want to discuss
whether a suspension is optimal or not from the point of view of a rational authority, I
assume the authority has rational expectations.8 Formally, the authority loss is defined as

L =
∫ ∞

−∞
ℓ̃ (𝜂) 𝑓 (𝜂 |𝑦) 𝑑𝜂,

8However, the results that follow also hold if the authority holds diagnostic beliefs, and the proofs
remain unchanged.
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Suspension attenuates runs

Suspension amplifies runs

Figure 3: Regions where a suspension amplifies/attenuates runs.

where 𝑓 (𝜂 |𝑦) is the conditional belief given by Bayes Rule, and the map ℓ̃ (𝜂) depends on
the strategy profile played by investors, as defined in Section 4. The authority anticipates
how a suspension affects the strategy profile played in equilibrium, and hence it anticipates
that, in equilibrium, the map ℓ̃ (𝜂) is not the same with and without a suspension. The
next Proposition shows under which conditions such a suspension attenuates runs, and
Figure 3 summarizes it.

Proposition 3. A suspension attenuates runs in good times and amplifies them in bad times:
The authority implements a suspension if 𝑧 > 𝑧∗, does not implement it if 𝑧 < 𝑧∗, and is
indifferent when 𝑧 = 𝑧∗, where

𝑧∗ = 1 + 𝛾Φ

(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦(

𝜏0 + 2𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

)
. (10)

Moreover, the authority is less prone to implementing a suspension after bad public news
arrives: 𝜕𝑧∗

𝜕𝑦 < 0.

To build intuition, it is useful to inspect the effect of suspensions on agents’ beliefs
at the time they act, from the point of view of the authority. For a given realization of
𝜂, define Δ𝑖 = 𝔼 [𝜂 | 𝑥𝑖, 𝑦] − 𝔼𝜃 [𝜂 | 𝑥𝑖, 𝑦] as the “change in beliefs” from date 1 to 2 for
an agent observing signals 𝑥𝑖 and 𝑦. This reflects how much a suspension improves (or
worsens) agent 𝑖’s expectations about the fundamental at the time she decides. Using
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Lemma 1 and 𝑥𝑖 = 𝜂 + 𝜀𝑖, we can write it as

Δ𝑖 = −𝜃
[
𝜏𝑥 (𝜂 + 𝜀𝑖) + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

]
.

After observing the public signal, the authority believes that 𝜂 ∼ 𝑁
(

𝜏𝑦𝑦
𝜏0+𝜏𝑦 ,

1
𝜏0+𝜏𝑦

)
. Hence

the expected change in beliefs from the authority’s standpoint is

𝔼 [Δ𝑖 | 𝑦] = − 𝜃𝜏𝑦
𝜏0 + 𝜏𝑦

𝑦. (11)

After some algebra, we can also compute the probability the authority assigns to an agent
improving its belief:

Pr (Δ𝑖 > 0| 𝑦) = Φ

(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦

𝜏𝑥
(
𝜏0 + 𝜏𝑦

)
)
. (12)

Equation (11) tells us that after negative news arrives (𝑦 < 0), the authority expects
agents to be more optimistic at date 2 than at date 1 on average (𝔼 [Δ𝑖 | 𝑦] > 0). Equation
(12) implies that if public news are sufficiently bad, it is expected that almost all agents
will improve their beliefs about the fundamental at date 2 (lim𝑦→−∞ Pr (Δ𝑖 > 0| 𝑦) = 1).
Those results are in a way expected. When unfavorable public news arrives, it is likely that
most agents have received negative news when combining their private and public signals.
Since agents overreact to negative news, expectations are more pessimistic, on average,
under diagnostic expectations. This suggests that a suspension could be beneficial, since
it makes agents more optimistic on average at the time they decide whether to run, and is
in line with the arguments presented in the introduction to justify suspensions in financial
markets.
However, the argument so far misses two important points: (i) What matters is not

how such policies affect average beliefs or the beliefs of most agents, but how it affects
the behavior of the agents more likely to change their decisions; (ii) In equilibrium, as
public news worsens, the agents more likely to change their decisions become agents that
received better news when combining their public and private signals.
Point (i) implies that agents that are close to indifference in equilibrium under diag-

nostic expectations are those that the authority should pay attention to. That is, agents
that observed a private signal 𝑥𝑖 close to the equilibrium cutoff without a suspension 𝑥∗
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may change their decision when they stop overreacting; agents that are far from the cutoff
are very decided, and unlikely to change their minds. I refer to the investor observing
𝑥𝑖 = 𝑥∗as the marginal investor, or more broadly, to those observing 𝑥𝑖 close to 𝑥∗as the
marginal investors, where 𝑥∗ is the equilibrium cutoff without a suspension.
Point (ii) says that, as public news worsens, the identity of marginal investors also

changes in equilibrium, becoming agents that received better news when combining their
public and private signals: The distorted expectation of the marginal investor without
a suspension, 𝔼𝜃 [𝜂 |𝑥∗, 𝑦], is a decreasing function of 𝑦.9 When agents anticipate that
others observed worse news, they are relatively more prone to running, even holding
constant their expectations about the fundamental. The reason is that they become more
pessimistic about the proportion of agents that renew, as they know others observed a
bad public signal. For instance, if the public and private signals are equally precise, an
agent observing 𝑥𝑖 = 1 and 𝑦 = −1 is more prone to running than an agent observing
𝑥𝑖 = −1 and 𝑦 = 1. Both hold the same belief about the fundamental, but the former is
more pessimistic about what others think about the fundamental (higher-order beliefs).
Hence, as long as agents are not ex-ante very prone to renewing (𝑧 > 1 + 𝛾), sufficiently
bad news makes the few agents that receive positive news overall the marginal ones.
Point (ii) can be seen as a natural generalization of the so-called publicity multiplier of
Morris and Shin (2003) for a setting with diagnostic agents.
Taken together, points (i) and (ii) imply that, after very bad public news arrives, it

is likely that the agents that matter for the authority are the few that received positive
news. A suspension, precisely because it curbs overreaction, will then worsen the beliefs
of those key agents at the time they decide, further increasing the size of the run, even if
almost all agents are receiving negative news and overreacting to it.
In short, the argument relies on the fact that suspensions tend to have a very different

effect on the average investor (which is an exogenous object) and the marginal investor
(which is determined in equilibrium), and particularly so for low and high realizations of
the public signal. This is graphically shown with an example in Figure 4, which depicts
9Using (5) and (8) we can write:

𝑧 + 𝜇∗
1 − 𝛾Φ

(√︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥

( (
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥

)
𝜇∗
1

𝜏𝑥 (1 + 𝜃) − 𝜏𝑦
𝜏𝑥

𝑦

))
= 1,

where 𝜇∗
1 = 𝔼𝜃 [𝜂 |𝑥∗, 𝑦]. Taking derivatives, one can see that the right-hand side of the equation above is

strictly increasing in 𝜇∗
1 and 𝑦, implying the claim made in the text.
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Figure 4: Change in beliefs from date 1 to 2 for average and marginal investor.
Notes. “Average investor” refers to an investor 𝑗 observing a private signal 𝑥 𝑗 = 𝔼 [ 𝑥𝑖 | 𝑦], which implies
Δ 𝑗 = 𝔼 [Δ𝑖 | 𝑦]. “Marginal investor” refers to an investor 𝑘 observing 𝑥𝑘 = 𝑥∗, where 𝑥∗ is the equilibrium
cutoff without a suspension, and hence Δ𝑘 = 𝔼 [𝜂 | 𝑥∗, 𝑦] − 𝔼𝜃 [𝜂 | 𝑥∗, 𝑦]. The following parameters were
used: 𝜏0 = 𝜏𝑥 = 𝜏𝑦 = 𝛾 = 1, 𝑧 = 3/2, 𝜃 = 1/2.

how the beliefs of the average and marginal investor change as agents stop overreacting,
for different observations of the public signal.
Proposition 3 also shows that, for a given realization of the public signal, lower ex-ante

investment returns make the authority less prone to suspending. This comes from the
fact that, when the investment is ex-ante very unprofitable, agents are very inclined to
run, and hence the marginal investor will be an agent that observed positive news overall.
The results discussed here also explain why a suspension attenuates runs when ex-

ante returns are high and/or public news is good: In such cases, the marginal investor
is someone observing negative news, for the reasons already discussed. Of course, if
suspensions implied other costs (for reasons outside my model), the authority would not
find them optimal in good scenarios where most agents would not run regardless of the
policy (high 𝑧 and/or 𝑦).
Finally, note that when 𝑧 is above 1 + 𝛾 , there is no realization of 𝑦 able to dissuade

the authority from implementing a suspension. Similarly, for 𝑧 < 1, the authority always
prefers not to implement it.10 Those are the cases in which investors have a dominant
choice before receiving their signals, and hence coordination motives are less strong. In
10This follows from lim𝑦→∞ 𝑧∗ = 1 and lim𝑦→−∞ 𝑧∗ = 1 + 𝛾.

19



such cases, changes in 𝑦 still affect the beliefs of the marginal investor in the direction
emphasized above, but it is never enough to revert the authority’s decision.

5.1 Information Quality and Supensions
I now further explore some comparative statics on the information structure. The analysis
so far assumes policymakers can alter investors’ beliefs simply by forcing them to take
some time to absorb incoming information, but take the information received by agents
as given. Another common policy used by policymakers to affect beliefs in a context of
runs is information disclosure, which aims at directly affecting the type and quality of
information received by investors (Iachan and Nenov, 2015, Ahnert and Kakhbod, 2017).
If the quality of the information arriving improves, is it more likely that a suspension is
desirable? As shown below, the answer depends on the type of information improving
(private vs public) and on how vulnerable to runs the economy is from an ex-ante
perspective (ex-ante investment returns).
For 𝑧 ∈ (1, 1 + 𝛾), let 𝑦∗ be the realization of the public signal that makes the authority

indifferent between suspending or not. Using Proposition 3, it is given by

𝑦∗ = −Φ−1
(
𝑧 − 1
𝛾

) 1
𝜏𝑦

√︄(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

𝜏0 + 𝜏𝑥 + 𝜏𝑦
. (13)

The ex-ante probability of a suspension being desirable for 𝑧 ∈ (1, 1 + 𝛾) is then

Pr (𝑦 > 𝑦∗) =
∫ ∞

−∞

[
1 − Φ

(√
𝜏𝑦 (𝑦∗ − 𝜂)) ] √𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂.

For 𝑧 ∉ (1, 1 + 𝛾) this probability is either zero or one (see Figure 3). The next proposition
shows how Pr (𝑦 > 𝑦∗) is affected by the quality of the information that arrives in the
complementary case.

Proposition 4. Consider 𝑧 ∈ (1, 1 + 𝛾). Then,
1. If 𝑧 < 1 + 𝛾/2, 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑦
> 0 and 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑥
< 0;

2. If 𝑧 > 1 + 𝛾/2, 𝑑 Pr(𝑦>𝑦∗)
𝑑𝜏𝑦

< 0 and 𝑑 Pr(𝑦>𝑦∗)
𝑑𝜏𝑥

> 0.

That is, if ex-ante returns are high, suspensions are more likely to be desirable when
investors receive private information of high quality and public information of low quality—
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provided coordination motives are strong and agents do not have a dominant action ex
ante (1 < 𝑧 < 1 + 𝛾). When ex-ante returns are low, the opposite result arises.
To gather intuition, it is useful to first inspect an extreme case. Suppose 𝜏𝑦 = 0, so

that the public signal is ignored by agents, and 𝑧 ∈ (1, 1 + 𝛾/2). An investor observing
𝑥𝑖 = 𝔼 [𝜂] = 0 (neutral news) has beliefs that are not distorted. For her to renew, it must
then be that 𝔼 [ℓ |𝑥𝑖 = 0] > 1−𝑧

𝛾 > 0.5 (since 𝑧 < 1 + 𝛾/2). However, she believes that
half of the agents observed a signal above her. Therefore, the marginal investor must
be someone observing positive news (𝑥𝑖 > 0). A suspension is then not optimal with
probability one, as the realization of the public signal has not effect on the equilibrium
behavior of investors and the identity of the marginal investor.
Now suppose 𝜏𝑦 increases, and hence investors no longer ignore the public signal

in their decisions. Now, if a sufficiently high public signal realizes, investors become
very optimistic about the action of others, and even an investor that observes a quite
negative private signal and updates her belief downward may be now be willing to renew
simply because it is more optimistic about what others think about the fundamental. The
marginal investor then becomes an investor that observed negative news overall with
positive probability, in which case a suspension attenuates runs. A similar reasoning helps
understand why Pr (𝑦 > 𝑦∗) decreases with 𝜏𝑦 for 𝑧 > 1 + 𝛾/2.
An increase in the precision of the private signal make agents put less weight on the

public signal, and hence an increase in 𝜏𝑥 has an effect similar to a reduction in 𝜏𝑦, which
explains why 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑦
and 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑥
have opposite signs.

6 Extensions
I now show that the main results of the paper are similar under a few alternative modelling
assumptions.

6.1 A Model of Regime Change with Diagnostic Investors
Consider a model with the same assumptions as the model of Section 2, except for the
fact that now the payoff of renewing is given by

𝑣 (𝜂, ℓ) =


𝑧 if 𝛾ℓ ≤ 𝜂,

𝛼𝑧 if 𝛾ℓ > 𝜂,
(14)
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where 𝑧 > 1, 𝛼𝑧 < 1 and 𝛾 > 0. Similar payoffs arise in games of regime change (e.g.,
Angeletos, Hellwig and Pavan, 2007, Sakovics and Steiner, 2012, Iachan and Nenov,
2015). For convenience, when 𝛾ℓ ≤ 𝜂 I say that investment succeeded, and when 𝛾ℓ > 𝜂

I say that it failed.
The next proposition is the analogous of Proposition 1.

Proposition 5. Suppose that the following condition holds:

𝛾
𝜏0 + 𝜏𝑦 − 𝜃𝜏𝑥

(1 + 𝜃) √𝜏𝑥
<
√
2𝜋. (15)

Then, the model has an essentially unique equilibrium, in which agents renew if 𝑥𝑖 > 𝑥∗, run
if 𝑥𝑖 < 𝑥∗, and the investment fails iff 𝜂 < 𝜂∗, where 𝑥∗ and 𝜂∗ are the unique solution to

𝛾Φ
(√

𝜏𝑥 (𝑥∗ − 𝜂∗)) = 𝜂∗, (16)

𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝜂∗ − (1 + 𝜃) (

𝜏𝑥𝑥∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
= 1. (17)

Note that the left-hand side of (15) is strictly decreasing in 𝜃. Hence, to guarantee
the equilibrium is unique for every 𝜃 ≥ 0, I impose the following assumption throughout
this subsection:

𝛾
𝜏0 + 𝜏𝑦√

𝜏𝑥
<
√
2𝜋. (A2)

This assumption then plays the same role as assumption (A1) in the main model.

6.1.1 Suspensions

Now consider the model used in Sections 4 and 5, but with the payoffs of investing
replaced by (14). Given the payoff structure, the authority might only care about the size
of a run up to the point that it affects whether the investment fails or succeeds. Hence, it
makes sense to generalize the payoff of the authority, so now I assume that it minimizes

L =
∫ ∞

−∞
𝛽

(
ℓ̃ (𝜂) , 𝜂

)
𝑓 (𝜂 |𝑦) 𝑑𝜂,

where 𝛽 (ℓ, 𝜂) is a (weakly) increasing function. I also assume that 𝛽 (ℓ, 𝜂) is not always
constant on ℓ: for every 𝜂, there exists ℓ1 and ℓ2, with ℓ2 > ℓ1, such that 𝛽 (ℓ2, 𝜂) >

𝛽 (ℓ1, 𝜂). For instance, if 𝛽 (ℓ, 𝜂) = ℓ, we have the same objective as in Section 5. If,
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however, 𝛽 (ℓ, 𝜂) = −𝑧 for ℓ ≤ 𝜂/𝛾, and 𝛽 (ℓ, 𝜂) = −𝛼𝑧 for ℓ > 𝜂/𝛾, then the authority
objective is equivalent to maximizing expected investment returns.
The next result is the analogous of Proposition 3.

Proposition 6. The authority implements a suspension if 𝑧 > 𝑧∗, does not implement it if
𝑧 < 𝑧∗, and is indifferent when 𝑧 = 𝑧∗, where

𝑧∗ = 1 + (1 − 𝛼) 𝑧Φ
(
𝜂
√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
, (18)

and 𝜂 solves 𝛾Φ
(
−√𝜏𝑥

(
𝜏𝑦
𝜏𝑥
𝑦 + 𝜂

))
= 𝜂. Moreover, 𝑑𝑧∗

𝑑𝑦 < 0.

6.2 Equilibrium Multiplicity
In this section, I consider the same model presented in Sections 4 and 5, except for the
fact that here I do not assume that condition (A1) necessarily holds. Hence, there may
be multiple equilibria. To compute how policies affect equilibrium outcomes, one now
needs an equilibrium selection criterion, which I discuss below.
As defined before, for a given public signal 𝑦, I say that 𝑥∗ is a cutoff strategy if

investors renew if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, and that 𝑥∗ is a symmetric cutoff equilibrium
if all investors playing the cutoff strategy 𝑥∗ is an equilibrium. Given that investor’s
payoffs of renewing are strictly increasing in their own private signal, an investor that
believes others will follow a cutoff strategy will best-respond by playing a cutoff strategy
(see the proof of Proposition 1 for details).
Let then 𝐵𝑅 (𝑥) be the optimal cutoff strategy of an investor that believes all others

are playing according to a cutoff strategy 𝑥 (𝐵𝑅 stands for best-response). I say that 𝑥∗
is a stable cutoff equilibrium if 𝐵𝑅 (𝑥∗) = 𝑥∗ and 𝐵𝑅′ (𝑥∗) < 1. The latter condition is
necessary and sufficient for the best-response dynamics to locally converge to the fixed
point 𝑥∗. Writing the payoff of renewing as in (19) in Appendix A, one can easily verify
that a stable cutoff equilibrium always exists in the model of Section 2, even if (A1) is
violated.
In what follows, the largest and smallest stable cutoff equilibrium denotes the sym-

metric cutoff equilibrium with the largest and smallest cutoff 𝑥∗, respectively, among all
symmetric cutoff equilibria. I then define two selection criteria:

S1: Investors always play according to the largest stable cutoff equilibrium;
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S2: Investors always play according to the smallest stable cutoff equilibrium.
The next proposition generalizes the results in Proposition 3.
Proposition 7. Suppose that either S1 or S2 holds. Then, there is a 𝑧∗∗ such that the
authority implements a suspension if 𝑧 > 𝑧∗∗ and does not implement it if 𝑧 < 𝑧∗∗. Moreover,
𝑧∗∗ is a decreasing and non-constant function of the public signal 𝑦.
Note that it cannot be guaranteed that 𝑧∗∗ is strictly decreasing in 𝑦, but the main

insights remain.

6.3 Partial Reversion to Rationality
Now consider the same model of Sections 4 and 5, except for the following deviation: At
date 1 agents hold beliefs given by (2) with 𝜃 = 𝜃1 > 0, and at date 2 they hold beliefs
given by (2) with 𝜃 = 𝜃2 ∈ (0, 𝜃1). That is, now investors still hold diagnostic beliefs at
date 2, but beliefs distortions are smaller than at date 1. The next proposition shows the
main result of the paper remains unchanged.
Proposition 8. The results in Proposition 3 continue to hold in the model where beliefs only
partially revert toward rationality.

7 Final Remarks
This paper proposes a global game model of runs with diagnostic investors, and uses
it to formally analyze the behavioral arguments often used to defend suspensions in a
context of runs. The key novel normative insight is that an often emphasized potential
benefit of suspensions during bad times—namely forcing investors to act only after
overreaction to incoming information fades—can actually be a cost in a setting with
strategic complementarities.
On the methodological side, the paper shows how to combine standard models of

coordination failures (global games) with models of belief formation that depart from
rationality (diagnostic expectations). Hence, the proposed model could serve as a starting
point to study other problems where coordination and overreaction are important.
I conclude with some remarks on the scope of my contribution. There are certainly

other costs/benefits of suspensions driven by channels not present in my model. It is be-
yond the scope of this paper to conduct a full cost-benefit analysis of suspensions. Instead,
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the goal here is to characterize under which circumstances the effects of suspensions
that operate through curbing overreaction to news—a channel frequently invoked by
defendants of those policies—attenuate or amplify runs.

A Proofs

A.1 Proof of Lemma 1
Standard Bayesian updating implies that 𝜂 conditional on observing a private signal 𝑥𝑖 and
a public signal 𝑦 is normally distributed with mean 𝜏𝑥𝑥𝑖+𝜏𝑦𝑦

𝜏0+𝜏𝑥+𝜏𝑦 and variance
(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)−1.
Hence:

𝑓 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦) =
√︂

𝜏0 + 𝜏𝑥 + 𝜏𝑦
2𝜋 exp

{
−𝜏0 + 𝜏𝑥 + 𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥 + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)2}
.

Using (2) we get:

𝑓 𝜃 (𝜂 | 𝑥𝑖 = 𝑥, 𝑦 = 𝑦) =
√︂

𝜏0 + 𝜏𝑥 + 𝜏𝑦
2𝜋 exp

{
−𝜏0 + 𝜏𝑥 + 𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥 + 𝜏𝑦𝑦

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)2}

·



exp
{
−𝜏0+𝜏𝑥+𝜏𝑦

2

(
𝜂 − 𝜏𝑥𝑥+𝜏𝑦𝑦

𝜏0+𝜏𝑥+𝜏𝑦

)2}

exp
{−𝜏0+𝜏𝑥+𝜏𝑦

2 𝜂2
}



𝜃

𝐶.

Letting 𝐶 = exp
{
−12

𝜃(1+𝜃)(𝜏𝑥𝑥+𝜏𝑦𝑦)2
𝜏0+𝜏𝑥+𝜏𝑦

}
and simplifying above, we get the density of a

normal distribution with mean 𝜇1 (𝑥𝑖, 𝑦) and variance 1/�̃�1. □

A.2 Proof of Proposition 1
Fix a realization of the public signal 𝑦. I say that 𝑥∗ is a cutoff strategy if investors renew
if 𝑥𝑖 > 𝑥∗ and run if 𝑥𝑖 < 𝑥∗, and that 𝑥∗ is a symmetric cutoff equilibrium if all investors
playing the cutoff strategy 𝑥∗ is an equilibrium. Suppose all agents play according to a
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cutoff strategy 𝑥∗. In such case, for a given 𝜂, ℓ is equal to

ℓ̃ (𝜂) = Φ
(√

𝜏𝑥 (𝑥∗ − 𝜂)) .
Denote by ℎ (𝑥, 𝑥∗) the distorted expected payoff of renewing of an agent that observes a
private signal 𝑥 and believes others are playing a cutoff strategy 𝑥∗. Using Lemma 1, we
can write it as:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇1 (𝑥, 𝑦) − 𝛾

∫ ∞

−∞
Φ

(√
𝜏𝑥 (𝑥∗ − 𝜂)) √︁�̃�1𝜙

(√︁
�̃�1 (𝜂 − 𝜇1 (𝑥, 𝑦))

)
𝑑𝜂.

Now let 𝑘 =
√
�̃�1 (𝜂 − 𝜇1 (𝑥)) and apply a change of variables to the integral above:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇1 (𝑥, 𝑦) − 𝛾

∫ ∞

−∞
Φ

(√
𝜏𝑥 (𝑥∗ − 𝜇1 (𝑥, 𝑦)) −

√︂
𝜏𝑥
�̃�1

𝑘

)
𝜙 (𝑘) 𝑑𝑘.

Using the known fact that for any constants 𝑎 and 𝑏,
∫ ∞
−∞ Φ(𝑎 + 𝑏𝑘)𝜙(𝑘)𝑑𝑘 = Φ

(
𝑎√
1+𝑏2

)
:

ℎ (𝑥, 𝑥∗) = 𝑧 + 𝜇1 (𝑥, 𝑦) − 𝛾Φ

(√︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥
(𝑥∗ − 𝜇1 (𝑥, 𝑦))

)
. (19)

One can easily verify that ℎ (𝑥, 𝑥∗) is strictly increasing in 𝑥. Hence, the optimal response
of an agent that believes others will play a cutoff strategy is to play a cutoff strategy 𝑥∗∗
satisfying ℎ (𝑥∗∗, 𝑥∗) = 1. Hence, a necessary and sufficient condition for 𝑥∗ to be an
equilibrium is ℎ (𝑥∗, 𝑥∗) = 1, that is, (8) must hold. A cutoff equilibrium exists, since
lim𝑥∗→∞ ℎ (𝑥∗, 𝑥∗) = ∞ and lim𝑥∗→−∞ ℎ (𝑥∗, 𝑥∗) = −∞. A sufficient condition for (8) to
have an unique solution is that its RHS is strictly increasing in 𝑥∗. Differentiating the RHS
of (8), one gets the following sufficient condition for equilibrium uniqueness in symmetric
cutoff strategies:

𝜕𝜇1 (𝑥∗, 𝑦)
𝜕𝑥𝑖

− 𝛾𝜙

(√︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥
(𝑥∗ − 𝜇1 (𝑥∗, 𝑦))

) √︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥

(
1 − 𝜕𝜇1 (𝑥∗, 𝑦)

𝜕𝑥𝑖

)
> 0,

∀𝑥∗ ∈ ℝ. (20)
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Replacing (6) and 𝜕𝜇1 (𝑥∗,𝑦)
𝜕𝑥𝑖

= (1+𝜃)𝜏𝑥
𝜏0+𝜏𝑥+𝜏𝑦 in (20) and using that the maximum of the standard

normal density is 1/√2𝜋, it suffices to check whether

(1 + 𝜃) 𝜏𝑥
𝜏0 + 𝜏𝑥 + 𝜏𝑦

− 𝛾√
2𝜋

√︄(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
1 − (1 + 𝜃) 𝜏𝑥

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
> 0,

which simplifies to (7).
It remains to show that all equilibria are symmetric cutoff equilibria. For a given 𝑦, my

equilibrium definition is equivalent to Nash Equilibrium in the game where the payoff of
renewal is given by (4) and strategies are maps 𝑑 : 𝑥𝑖 ↦→ {0, 1}. I now show that there is
an essentially unique strategy profile surviving iterated elimination of strictly dominated
strategies (IESDS hereafter), which then implies that all Nash Equilibria are symmetric
cutoff equilibria. What follows extends the uniqueness arguments in Morris and Shin
(2000) to my setting with diagnostic investors.
Suppose all investors 𝑗 ≠ 𝑖 follow the strategy of running regardless of the observed

signal 𝑥 𝑗. Then, investor 𝑖 strictly prefers to renew when she observes 𝑥𝑖 > 𝜁1 and strictly
prefers to run if 𝑥𝑖 < 𝜁1, where 𝜁1 satisfies lim𝑥∗→∞ ℎ (𝜁1, 𝑥∗) = 𝑧 + 𝜇1 (𝜁1) − 𝛾 = 1,
since ℎ (·) is strictly increasing in its first argument. Given that payoffs (4) are strictly
decreasing in ℓ̃ (𝜂), any strategy prescribing running when observing 𝑥𝑖 > 𝜁1 is a strictly
dominated strategy. Now consider the game where we remove strategies that satisfy
𝑑 (𝑥𝑖) = 0 for some 𝑥𝑖 > 𝜁1 from investors’ strategy space. Suppose, all investors 𝑗 ≠ 𝑖

play the cutoff strategy 𝜁1. Again, investor 𝑖 strictly prefers to run (renew) if 𝑥𝑖 < 𝜁2
(𝑥𝑖 > 𝜁2), where 𝜁2 satisfies ℎ (𝜁2, 𝜁1) = 1. Using the same arguments as before, this
implies that running after 𝑥𝑖 > 𝜁2 is part of a strictly dominated strategy in this modified
game. Moreover, 𝜁2 < 𝜁1, since ℎ (·) is strictly increasing in the first argument and
strictly decreasing in the second. Continuing to eliminate strictly dominated strategies,
one constructs a strictly decreasing sequence 𝜁𝑛. Such sequence has a lower bound,
since whenever 𝑥𝑖 is below the 𝑥 that solves 𝑧 + 𝜇1 (𝑥, 𝑦) = 1, investors strictly prefer
to run regardless of what others do. Therefore, it converges to some 𝜁∞ so that any
strategy that prescribes running for some 𝑥𝑖 > 𝜁∞ does not survive IESDS. Moreover,
since ℎ (𝜁𝑘+1, 𝜁𝑘) = 1, for all 𝑘 ≥ 1, we have that ℎ (𝜁∞, 𝜁∞) = 1.
Starting with the assumption that all players 𝑗 ≠ 𝑖 follow the strategy of always

renewing, regardless of their signal, and following steps analogous to those in the previous
paragraph, one obtains a strictly increasing sequence 𝜉𝑛 that converges to some 𝜉∞
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such that: (i) strategies that prescribe renewing for 𝑥𝑖 < 𝜉∞ do not survive IESDS; (ii)
ℎ (𝜉∞, 𝜉∞) = 1. However, given (7), there is an unique 𝑥∗ satisfying ℎ (𝑥∗, 𝑥∗) = 1 and
hence 𝜉∞ = 𝜁∞. Therefore, any strategy that survives IESDS is a cutoff strategy, with
cutoff given by the unique solution to ℎ (𝑥∗, 𝑥∗) = 1. □

A.3 Proof of Proposition 2
Fixing any strategy profile of date-1 and date-2 investors, any investor at date 1 strictly
prefers to decide between renewing and running himself than waiting, since waiting
is equivalent to delegating the decision to his date-2 self, which at best will lead to its
preferred option between actions 0 and 1 but will imply a cost 𝛿. That is, waiting after
some signals is a strictly dominated strategy for date-1 investors. Hence, we can eliminate
those strategies from the strategy space. The game becomes identical to that of Section 2
from the point of view of date-1 investors, and hence in equilibrium they play according
to the cutoff strategy 𝑥∗ of Proposition 1. □

A.4 Proof of Proposition 3
For notational convenience, define

𝑞 (𝑥∗, 𝜃, 𝑧) = 𝑧 + (1 + 𝜃) (
𝜏𝑥𝑥∗ + 𝜏𝑦𝑦

)
𝜏0 + 𝜏𝑥 + 𝜏𝑦

− 𝛾Φ
©
«
√︄ (

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
𝑥∗ − (1 + 𝜃) (

𝜏𝑥𝑥∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

)ª®
¬
, (21)

which is the LHS of (8) after replacing 𝜇1 (𝑥∗, 𝑦) and �̃�1. Condition (A1) implies that
𝑞 (𝑥∗, 𝜃, 𝑧) is strictly increasing in 𝑥∗. Note that, with a suspension, investors play as in
Proposition 1 assuming 𝜃 = 0. Let 𝑥∗𝑒𝑞 (𝜃) be the equilibrium cutoff of Proposition 1 for
a given 𝜃. Denote by 𝑥∗𝑅 and 𝑥∗𝐷 the equilibrium cutoffs with and without a suspension,
respectively. By Proposition 1, we have 𝑞

(
𝑥∗𝑒𝑞 (𝜃) , 𝜃, 𝑧

)
= 1 for all 𝜃 ≥ 0, and, using
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Proposition 2, 𝑥∗𝑅 = 𝑥∗𝑒𝑞 (0) and 𝑥∗𝐷 = 𝑥∗𝑒𝑞 (𝜃). Taking derivatives of 𝑞 (·) with respect to 𝜃:

𝜕𝑞 (𝑥∗, 𝜃, 𝑧)
𝜕𝜃

=
(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
)

·
𝛾𝜙

(√︂
(𝜏0+𝜏𝑥+𝜏𝑦)𝜏𝑥
𝜏0+2𝜏𝑥+𝜏𝑦

(
𝑥∗ − (1+𝜃)(𝜏𝑥𝑥∗+𝜏𝑦𝑦)

𝜏0+𝜏𝑥+𝜏𝑦

)) √︂
(𝜏0+𝜏𝑥+𝜏𝑦)𝜏𝑥
𝜏0+2𝜏𝑥+𝜏𝑦 + 1

𝜏0 + 𝜏𝑥 + 𝜏𝑦
, (22)

and hence sgn
(
𝜕𝑞
𝜕𝜃

)
= sgn

(
𝜏𝑥𝑥∗ + 𝜏𝑦𝑦

)
. Suppose 𝜏𝑥𝑥∗𝑒𝑞 (0)+𝜏𝑦𝑦 > 0. Then,∀𝑥∗ ≥ 𝑥∗𝑒𝑞 (0)

and ∀𝜃 ≥ 0, 𝜕𝑞(𝑥∗,𝜃,𝑧)
𝜕𝜃 > 0. Hence, since 𝜕𝑞(𝑥∗,𝜃,𝑧)

𝜕𝑥∗ > 0, ∀𝑥∗ and ∀𝜃 ≥ 0 (by (A1)),
𝑥∗𝑒𝑞 (𝜃) < 𝑥∗𝑒𝑞 (0), ∀𝜃 > 0, which implies that 𝑥∗𝐷 < 𝑥∗𝑅. Similarly, if 𝜏𝑥𝑥∗𝑒𝑞 (0) + 𝜏𝑦𝑦 < 0,
then ∀𝑥∗ ≤ 𝑥∗𝑒𝑞 (0) and ∀𝜃 ≥ 0, 𝜕𝑞(𝑥∗,𝜃,𝑧)

𝜕𝜃 < 0. Hence, in that case, 𝑥∗𝑒𝑞 (𝜃) > 𝑥∗𝑒𝑞 (0),
∀𝜃 > 0, implying 𝑥∗𝐷 > 𝑥∗𝑅. Suppose now 𝜏𝑥𝑥∗𝑒𝑞 (0) + 𝜏𝑦𝑦 = 0. Then 𝑞

(
𝑥∗𝑒𝑞 (0) , 𝜃, 𝑧

)
does not depend on 𝜃, and hence 𝑥∗𝑒𝑞 (𝜃) = 𝑥∗𝑒𝑞 (0), ∀𝜃 ≥ 0, and so 𝑥∗𝑅 = 𝑥∗𝐷. Hence, a
suspension increases (decreases) the equilibrium cutoff iff 𝑥∗𝑅 = 𝑥∗𝑒𝑞 (0) is above (below)
−𝜏𝑦

𝜏𝑥
𝑦. For any given 𝜂, the mass of agents running is a strictly increasing function of the

cutoff strategy followed by investors. Higher values of 𝑧 imply lower values of 𝑥∗𝑅, since
𝜕𝑞
𝜕𝑧 > 0 and 𝜕𝑞

𝜕𝑥∗ > 0. Therefore, 𝑧∗ is characterized by the value of 𝑧 such that 𝑥∗𝑅 = −𝜏𝑦
𝜏𝑥
𝑦:

𝑞

(
−𝜏𝑦
𝜏𝑥

𝑦, 0, 𝑧∗
)
= 𝑧∗ − 𝛾Φ

(
−𝑦𝜏𝑦

√︄
𝜏0 + 𝜏𝑥 + 𝜏𝑦(

𝜏0 + 2𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

)
= 1, (23)

yielding (10). The last statement follows directly from (10). □

A.5 Proof of Proposition 4
Given the symmetry properties the normal distribution, we can rewrite Pr (𝑦 > 𝑦∗) as

Pr (𝑦 > 𝑦∗) =
∫ ∞

−∞
Φ

(√
𝜏𝑦 (𝜂 − 𝑦∗)) √𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂. (24)

Therefore,

𝑑 Pr (𝑦 > 𝑦∗)
𝑑𝜏𝑦

=
∫ ∞

−∞

(
𝜂 − 𝑦∗

2𝜏𝑦
− 𝑑𝑦∗

𝑑𝜏𝑦

) √
𝜏𝑦𝜙

(√
𝜏𝑦 (𝜂 − 𝑦∗)) √𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂,
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where, by differentiating (13),

𝑑𝑦∗

𝑑𝜏𝑦
=

[
𝜏2𝑦 +

(
2𝜏0 + 7𝜏𝑥2

)
𝜏𝑦 + (𝜏0 + 2𝜏𝑥) (𝜏0 + 𝜏𝑥)

] √
𝜏𝑥Φ−1

(
𝑧−1
𝛾

)
√︁
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2
𝜏2𝑦

. (25)

After some algebra, one can conclude that for some scaling constant Σ > 0,
Σ
√
𝜏𝑦𝜙

(√
𝜏𝑦 (𝜂 − 𝑦∗)) √𝜏0𝜙

(√
𝜏0𝜂

)
is the density of a normal random variable with

mean 𝜏𝑦𝑦∗

𝜏0+𝜏𝑦 . Hence,

𝑑 Pr (𝑦 > 𝑦∗)
𝑑𝜏𝑦

=
1
Σ

[
𝑦∗

2
(
𝜏0 + 𝜏𝑦

) − 𝑦∗

2𝜏𝑦
− 𝑑𝑦∗

𝑑𝜏𝑦

]
.

Replacing 𝑦∗ and 𝑑𝑦∗
𝑑𝜏𝑦
using (13) and (25) and simplifying, we get

𝑑 Pr (𝑦 > 𝑦∗)
𝑑𝜏𝑦

= −1
Σ

Φ−1
(
𝑧−1
𝛾

)
𝜏𝑥

2𝜏2𝑦
(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2 (
𝜏0 + 𝜏𝑦

) √︃(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

·
[ (
2𝜏0 + 4𝜏𝑦

)
𝜏2𝑥 + 3

(
𝜏0 + 73𝜏𝑦

) (
𝜏0 + 𝜏𝑦

)
𝜏𝑥 +

(
𝜏0 + 2𝜏𝑦

) (
𝜏0 + 𝜏𝑦

)2]
.

Therefore, if 𝑧 > 1 + 𝛾/2, Φ−1
(
𝑧−1
𝛾

)
> 0 and 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑦
< 0. If 𝑧 < 1 + 𝛾/2, then

Φ−1
(
𝑧−1
𝛾

)
< 0 and 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑦
> 0.

Now differentiate (24) with respect to 𝜏𝑥:

𝑑 Pr (𝑦 > 𝑦∗)
𝑑𝜏𝑥

= −
∫ ∞

−∞

𝑑𝑦∗

𝑑𝜏𝑥

√
𝜏𝑦𝜙

(√
𝜏𝑦 (𝜂 − 𝑦∗)) √𝜏0𝜙

(√
𝜏0𝜂

)
𝑑𝜂.

Differentiating (13) we get

𝑑𝑦∗

𝑑𝜏𝑥
= −

[
2𝜏2𝑥 + 4

(
𝜏0 + 𝜏𝑦

)
𝜏𝑥 +

(
𝜏0 + 𝜏𝑦

)2]
Φ−1

(
𝑧−1
𝛾

)
2𝜏𝑦

(
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)3/2√︃(
𝜏0 + 2𝜏𝑥 + 𝜏𝑦

)
𝜏𝑥

.

Therefore, 𝑑 Pr(𝑦>𝑦
∗)

𝑑𝜏𝑥
> 0 if 𝑧 > 1 + 𝛾/2, and 𝑑 Pr(𝑦>𝑦∗)

𝑑𝜏𝑥
< 0 if 𝑧 < 1 + 𝛾/2. □

30



A.6 Proof of Proposition 5
Fix a realization of the public signal 𝑦 and suppose all investors play according to some
cutoff strategy 𝑥∗, as defined in the proof of Proposition 1. Then, the investment fail iff
𝜂 < 𝜂∗, where 𝜂∗ is given by the unique solution to (16). In what follows I write 𝜂∗ as
𝜂∗ (𝑥∗) to emphasize that (16) implicitly defines 𝜂∗ as a function of 𝑥∗. Using the implicit
function theorem:

𝑑𝜂∗

𝑑𝑥∗
=

𝛾
√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥∗ − 𝜂∗ (𝑥∗)))

𝛾
√
𝜏𝑥𝜙

(√
𝜏𝑥 (𝑥∗ − 𝜂∗ (𝑥∗))) + 1 > 0.

Denote by 𝐻 (𝑥, 𝑥∗) the distorted expected payoff of renewing of an agent that observes
a private signal 𝑥 and believes others are playing a cutoff strategy 𝑥∗. Using Lemma 1:

𝐻 (𝑥, 𝑥∗) = 𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝜂∗ (𝑥∗) − (1 + 𝜃) (

𝜏𝑥𝑥 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
.

Since 𝐻 (𝑥, 𝑥∗) is strictly increasing in 𝑥, 𝑥∗ is a cutoff equilibrium iff 𝐻 (𝑥∗, 𝑥∗) = 1.
Using (16), note that lim𝑥∗→∞ 𝜂∗ (𝑥∗) = 𝛾 and lim𝑥∗→−∞ 𝜂∗ (𝑥∗) = 0. An equilibrium
then exists, since lim𝑥∗→∞ 𝐻 (𝑥∗, 𝑥∗) = 𝑧 > 1 and lim𝑥∗→−∞ 𝐻 (𝑥∗, 𝑥∗) = 𝛼𝑧 < 1. In the
proof of Proposition 1, the argument used to show that a cutoff satisfying ℎ (𝑥∗, 𝑥∗) = 1
was the essentially unique equilibrium relied only on two properties of the function
ℎ (𝑥, 𝑥∗), namely that: (i) ℎ (𝑥, 𝑥∗) was strictly increasing in 𝑥; (ii) 𝑟 (𝑥∗) ≡ ℎ (𝑥∗, 𝑥∗)
was strictly increasing in 𝑥∗. If 𝐻 (𝑥, 𝑥∗) and 𝑅 (𝑥∗) ≡ 𝐻 (𝑥∗, 𝑥∗) satisfy (i) and (ii),
respectively, then the same arguments used in the proof of Proposition 1 imply the desired
result, after replacing ℎ (·) by 𝐻 (·) in that proof. That 𝐻 (𝑥, 𝑥∗) is strictly increasing in
𝑥 is straightforward. To show the second property, first I differentiate 𝑅 (𝑥∗):

𝑑𝑅

𝑑𝑥∗
= (1 − 𝛼) 𝑧𝜙

(√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝜂∗ (𝑥∗) − (1 + 𝜃) (

𝜏𝑥𝑥 + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))

· √︁𝜏0 + 𝜏𝑥 + 𝜏𝑦

[ (1 + 𝜃) 𝜏𝑥
𝜏0 + 𝜏𝑥 + 𝜏𝑦

− 𝑑𝜂∗

𝑑𝑥∗

]
.
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Since 𝜙 (𝑘) ≤ 1/√2𝜋, we have that 𝑑𝜂∗
𝑑𝑥∗ ≤ 𝛾

√
𝜏𝑥

𝛾
√
𝜏𝑥+

√
2𝜋 . Hence, a sufficient condition for

𝑑𝑅
𝑑𝑥∗ > 0, for all 𝑥∗, is

(1 + 𝜃) 𝜏𝑥
𝜏0 + 𝜏𝑥 + 𝜏𝑦

>
𝛾
√
𝜏𝑥

𝛾
√
𝜏𝑥 +

√
2𝜋

,

which after rearranging yields condition (15). □

A.7 Proof of Proposition 6
Define 𝑄 (𝑥∗, 𝜃, 𝑧) as

𝑄 (𝑥∗, 𝜃, 𝑧) = 𝑧 − (1 − 𝛼) 𝑧Φ
(√︁

𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝑘 (𝑥∗) − (1 + 𝜃) (

𝜏𝑥𝑥∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
,

where 𝑘 (𝑥∗) denotes the 𝜂∗ that solves (16) for a given 𝑥∗. Replacing the reference to
(8) in Proposition 2 by (16) and (17), one can see that the result and its proof also apply
to the model of this section. Hence, letting 𝑥∗𝑅 and 𝑥∗𝐷 denote the equilibrium cutoff with
and without a suspension, respectively, by Proposition 5, we have that 𝑄

(
𝑥∗𝑅, 0, 𝑧

)
= 1

and 𝑄
(
𝑥∗𝐷, 𝜃, 𝑧

)
= 1. Taking derivatives of 𝑄 (·) with respect to 𝜃:

𝜕𝑄

𝜕𝜃
=

(
𝜏𝑥𝑥

∗ + 𝜏𝑦𝑦
) (1 − 𝛼) 𝑧√

𝜏0 + 𝜏𝑥 + 𝜏𝑦
𝜙

(√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

(
𝑘 (𝑥∗) − (1 + 𝜃) (

𝜏𝑥𝑥∗ + 𝜏𝑦𝑦
)

𝜏0 + 𝜏𝑥 + 𝜏𝑦

))
,

and hence sgn
(
𝜕𝑄
𝜕𝜃

)
= sgn

(
𝜏𝑥𝑥∗ + 𝜏𝑦𝑦

)
. Moreover, note that 𝑄

(
−𝜏𝑦

𝜏𝑥
𝑦, 𝜃, 𝑧

)
= 1 for some

𝜃 ≥ 0 implies 𝑄
(
−𝜏𝑦

𝜏𝑥
𝑦, 𝜃, 𝑧

)
= 1 for all 𝜃 ≥ 0. Given those properties of 𝑄 (·), one can

then repeat the same arguments in the proof of Proposition 2, replacing 𝑞 (·) by 𝑄 (·), to
show that 𝑧∗ is now given by

𝑄

(
−𝜏𝑦
𝜏𝑥

𝑦, 0, 𝑧∗
)
= 𝑧∗ − (1 − 𝛼) 𝑧Φ

(
𝑘

(
−𝜏𝑦
𝜏𝑥

𝑦

) √︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

)
= 1.

Letting 𝜂 = 𝑘
(
−𝜏𝑦

𝜏𝑥
𝑦
)
, we get (18). Moreover,

𝑑𝑧∗

𝑑𝑦
= (1 − 𝛼) 𝑧𝜙

(
𝜂
√︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

) √︁
𝜏0 + 𝜏𝑥 + 𝜏𝑦

𝑑𝜂

𝑑𝑦
.
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Applying the implicit function theorem to 𝛾Φ
(
−√𝜏𝑥

(
𝜏𝑦
𝜏𝑥
𝑦 + 𝜂

))
= 𝜂, we get 𝑑𝜂

𝑑𝑦 < 0,
which then proves the last statement. □

A.8 Proof of Proposition 7
The notation in this proof follows the notation used in the proofs of Propositions 1 and 3.
I start by representing the stability requirement differently. Using (19) and Lemma 1, we
can find 𝐵𝑅 (𝑥) by solving

𝑧 + (1 + 𝜃) (
𝜏𝑥𝐵𝑅 (𝑥) + 𝜏𝑦𝑦

)
�̃�1

− 𝛾Φ

(√︂
�̃�1𝜏𝑥

�̃�1 + 𝜏𝑥

(
𝑥 − (1 + 𝜃) (

𝜏𝑥𝐵𝑅 (𝑥) + 𝜏𝑦𝑦
)

�̃�1

))
= 1.

By the implicit function theorem we have

𝐵𝑅′ (𝑥) =
𝛾𝜙

(√︃
�̃�1𝜏𝑥
�̃�1+𝜏𝑥

(
𝑥 − (1+𝜃)(𝜏𝑥𝐵𝑅(𝑥)+𝜏𝑦𝑦)

�̃�1

)) √︃
�̃�1𝜏𝑥
�̃�1+𝜏𝑥

(1+𝜃)𝜏𝑥
�̃�1

[
1 + 𝛾𝜙

(√︃
�̃�1𝜏𝑥
�̃�1+𝜏𝑥

(
𝑥 − (1+𝜃)(𝜏𝑥𝐵𝑅(𝑥)+𝜏𝑦𝑦)

�̃�1

)) √︃
�̃�1𝜏𝑥
�̃�1+𝜏𝑥

] .

Using (21), one can verify that 𝐵𝑅′ (𝑥) < 1 ⇐⇒ 𝜕𝑞(𝑥,𝜃,𝑧)
𝜕𝑥∗ > 0.

Proposition 2 and its proof still apply once one additionally specifies that 𝑥∗ is the
largest (if S1 holds) or the smallest (if S2 holds) solution to (8) that satisfies 𝜕𝑞(𝑥∗,𝜃,𝑧)

𝜕𝑥∗ > 0
in its statement. Moreover, with a suspension, investors play according to the largest (if
S1 holds) or smallest (if S2 holds) cutoff 𝑥∗ that satisfies 𝜕𝑞(𝑥∗,𝜃,𝑧)

𝜕𝑥∗ > 0 and (8) evaluated
at 𝜃 = 0.
In the remaining of the proof I assume S1 holds, since the proof under S2 follows analo-

gous steps. Let 𝑥∗𝑆1 (𝜃, 𝑧) denote the largest 𝑥∗ satisfying 𝜕𝑞(𝑥∗,𝜃,𝑧)
𝜕𝑥∗ > 0 and 𝑞 (𝑥∗, 𝜃, 𝑧) = 1,

for an arbitrary 𝜃 ≥ 0. Hence, given a parameter 𝜃 > 0, 𝑥∗𝑆1 (0, 𝑧) and 𝑥∗𝑆1 (𝜃, 𝑧)
represent the selected equilibrium cutoff with and without a suspension, respectively.
Moreover, if 𝑥∗𝑆1 (0, 𝑧) < 𝑥∗𝑆1 (𝜃, 𝑧), then a suspension is optimal for the authority; if
𝑥∗𝑆1 (0, 𝑧) > 𝑥∗𝑆1 (𝜃, 𝑧) , then a suspension is not optimal.
Using (22), note that if 𝜏𝑥𝑥∗ + 𝜏𝑦𝑦 > 0, then 𝜕𝑞(𝑥†,𝜃,𝑧)

𝜕𝜃 > 0, ∀𝑥† ≥ 𝑥∗ and ∀𝜃 ≥ 0.
Suppose that 𝜏𝑥𝑥∗𝑆1 (0, 𝑧) + 𝜏𝑦𝑦 > 0. Then, ∀𝑥† ≥ 𝑥∗𝑆1 (0, 𝑧) and ∀𝜃 ≥ 0, 𝜕𝑞(𝑥

†,𝜃,𝑧)
𝜕𝜃 > 0

and 𝑞
(
𝑥†, 0, 𝑧

) ≥ 1 (otherwise 𝑥∗𝑆1 (0, 𝑧) would not be the largest equilibrium with 𝜃 = 0,
given lim𝑥∗→∞ 𝑞 (𝑥∗, 0, 𝑧) = ∞). This implies 𝑞 (

𝑥†, 𝜃, 𝑧
)
> 1, ∀𝑥† ≥ 𝑥∗𝑆1 (0, 𝑧) and

∀𝜃 > 0. Hence, 𝑥∗𝑆1 (0, 𝑧) > 𝑥∗𝑆1 (𝜃, 𝑧), ∀𝜃 > 0, and a suspension is not optimal. Now
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suppose that 𝜏𝑥𝑥∗𝑆1 (0, 𝑧) + 𝜏𝑦𝑦 < 0. An analogous reasoning shows that a suspension
is optimal, since 𝑥∗𝑆1 (0, 𝑧) < 𝑥∗𝑆1 (𝜃, 𝑧). Since

𝜕𝑞(𝑥∗𝑆1 (𝜃,𝑧),𝜃,𝑧)
𝜕𝑥∗ > 0, 𝜕𝑞(𝑥∗,𝜃,𝑧)

𝜕𝑧 > 0, ∀𝑥∗,
and 𝑞

(
𝑥†, 𝜃, 𝑧

) ≥ 1, ∀𝑥† ≥ 𝑥∗𝑆1 (𝜃, 𝑧), an increase in 𝑧 decreases the equilibrium cut-
off, and so 𝑥∗𝑆1 (𝜃, 𝑧) is strictly decreasing, but possibly discontinuous, in 𝑧. Moreover,
lim𝑧→∞ 𝑥∗𝑆1 (𝜃, 𝑧) = −∞ and lim𝑧→−∞ 𝑥∗𝑆1 (𝜃, 𝑧) = ∞. Hence, 𝑧∗∗ is uniquely determined
by the condition: 𝑥∗𝑆1 (0, 𝑧∗∗ − 𝜖) > −𝜏𝑦

𝜏𝑥
𝑦 and 𝑥∗𝑆1 (0, 𝑧∗∗ + 𝜖) < −𝜏𝑦

𝜏𝑥
𝑦, for all 𝜖 > 0.

I now show that 𝑧∗∗ is weakly decreasing in 𝑦. For a given 𝑦, define the following
increasing transformation of 𝑥∗: 𝜇∗

1 = 𝜇1 (𝑥∗, 𝑦). We can then write 𝑞 (𝑥∗, 0, 𝑧) in terms
of 𝜇∗

1:

𝑞 (𝑥∗, 0, 𝑧) = 𝑞
(
𝜇∗
1, 𝑧, 𝑦

)
= 𝑧 + 𝜇∗

1 − 𝛾Φ
©
«
√︄ (

𝜏0 + 𝜏𝑥 + 𝜏𝑦
)
𝜏𝑥

𝜏0 + 2𝜏𝑥 + 𝜏𝑦

( (
𝜏0 + 𝜏𝑦

)
𝜇∗
1 − 𝜏𝑦𝑦

𝜏𝑥

)ª®
¬
.

(26)
For a given 𝑧 and 𝑦, let 𝑤𝑆1 (𝑧, 𝑦) = 𝜇1

(
𝑥∗𝑆1 (0, 𝑧) , 𝑦

)
. Hence, 𝑤𝑆1 (𝑧, 𝑦) is the largest 𝜇∗

1
that satisfies 𝑞

(
𝜇∗
1, 𝑧, 𝑦

)
= 1 and 𝜕𝑞(𝜇∗1,𝑧,𝑦)

𝜕𝜇∗1
> 0 (since 𝜕𝑞(𝑥∗,0,𝑧)

𝜕𝑥∗ > 0 ⇐⇒ 𝜕𝑞(𝜇∗1,𝑧,𝑦)
𝜕𝜇∗1

> 0).
Also, 𝑤𝑆1 (𝑧, 𝑦) is strictly decreasing in 𝑧, since 𝑥∗𝑆1 (0, 𝑧) is strictly decreasing in 𝑧.
We can also define 𝑧∗∗ as the unique value of 𝑧 that satisfies: 𝑤𝑆1 (𝑧 − 𝜖, 𝑦) > 0 and
𝑤𝑆1 (𝑧 + 𝜖, 𝑦) < 0, for all 𝜖 > 0 (hereafter condition D1). Consider an increase in 𝑦 from 𝑦1
to 𝑦2 > 𝑦1, and denote by 𝑧∗∗1 and 𝑧∗∗2 the values of 𝑧∗∗ associated to 𝑦1 and 𝑦2, respectively.
Note that 𝑞

(
𝜇∗
1, 𝑧, 𝑦

)
is strictly increasing in 𝑦. Moreover, 𝑞

(
𝜇∗
1, 𝑧, 𝑦1

) ≥ 1, ∀𝜇∗
1 ≥

𝑤𝑆1 (𝑧, 𝑦1) (otherwise 𝑤𝑆1 (𝑧, 𝑦1) would not be the largest 𝜇∗
1 satisfying 𝑞

(
𝜇∗
1, 𝑧, 𝑦1

)
= 1

and 𝜕𝑞(𝜇∗1,𝑧,𝑦1)
𝜕𝜇∗1

> 0, since lim𝜇∗1→∞ 𝑞
(
𝜇∗
1, 𝑧, 𝑦

)
= ∞). Hence, 𝑤𝑆1 (𝑧, 𝑦2) < 𝑤𝑆1 (𝑧, 𝑦1) ,

since 𝑞
(
𝜇∗
1, 𝑧, 𝑦2

)
> 1,∀𝜇∗

1 ≥ 𝑤𝑆1 (𝑧, 𝑦1), and so 𝑤𝑆1 (𝑧, 𝑦) is strictly decreasing in 𝑦.
Suppose by contradiction that 𝑧∗∗2 > 𝑧∗∗1 . Then it must be that for all 𝜖 > 0

𝑤𝑆1
(
𝑧∗∗1 − 𝜖, 𝑦1

)
> 𝑤𝑆1

(
𝑧∗∗2 − 𝜖, 𝑦1

)
> 𝑤𝑆1

(
𝑧∗∗2 − 𝜖, 𝑦2

)
> 0,

𝑤𝑆1
(
𝑧∗∗2 + 𝜖, 𝑦2

)
< 𝑤𝑆1

(
𝑧∗∗2 + 𝜖, 𝑦1

)
< 𝑤𝑆1

(
𝑧∗∗1 + 𝜖, 𝑦1

)
< 0.

But then, 𝑧 = 𝑧∗∗2 satisfies condition D1 when 𝑦 = 𝑦1, which contradicts that 𝑧∗∗ is
uniquely defined. To show that 𝑧∗∗ is not independent of 𝑦, using (26), note that
lim𝑦→∞𝑤𝑆1 (𝑧, 𝑦) = 1 − 𝑧 and lim𝑦→−∞𝑤𝑆1 (𝑧, 𝑦) = 1 + 𝛾 − 𝑧, implying lim𝑦→∞ 𝑧∗∗ = 1
and lim𝑦→−∞ 𝑧∗∗ = 1 + 𝛾. □
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A.9 Proof of Proposition 8
The proof is identical to that of Proposition 3, with a few adjustments. First, 𝑥∗𝑅 is now
defined as 𝑥∗𝑅 = 𝑥∗𝑒𝑞 (𝜃2) and 𝑥∗𝐷 as 𝑥∗𝐷 = 𝑥∗𝑒𝑞 (𝜃1). Second, in the text below equation (22),
𝑥∗𝑒𝑞 (0) should be replaced by 𝑥∗𝑒𝑞 (𝜃2) and “∀𝜃 > 0” should be read as “∀𝜃 > 𝜃2”. Finally,
one should note that 𝑞

(
−𝜏𝑦

𝜏𝑥
𝑦, 0, 𝑧∗

)
= 𝑞

(
−𝜏𝑦

𝜏𝑥
𝑦, 𝜃2, 𝑧∗

)
, and so (10) is still obtained by

solving (23). □
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