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Abstract

The main result in this note is that prudence (convex marginal utility of con-

sumption) is not a sufficient condition for price risk to generate precautionary savings.

With a logarithmic utility function, the consumer spends a constant fraction of total

(nominal) wealth on nominal consumption. As a result, an unexpected change in the

price level is absorbed by real consumption, leaving nominal consumption and savings

unchanged.
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1 Introduction

Research in macroeconomics has put significantly more attention on the relation be-

tween inflation and economic performance in a context where agents are subject to risk

and save for precautionary reasons since the seminal work by Kaplan et al. (2018). This

line of research requires to improve our understanding of precautionary savings in an

inflationary environment. In this note, we focus on the relation between precautionary

savings and inflation risk. Two traditional assumptions that generate precautionary

savings in macro models are prudence (i.e. convex marginal utility of consumption)

and financial frictions. We show in an example that prudence is not a sufficient con-

dition for inflation risk to produce precautionary savings. This comes as a surprise

because risky real wages typically imply precautionary savings in models where con-

sumers are prudent. In our example, inflation risk implies real wage risk. Yet the

representative consumer does not increase savings in the comparative static exercise

where one increases the standard deviation of the stochastic component of the price

level. The intuition for this result relies on a well-known property of logarithmic utility:

the representative consumer spends a constant fraction of wealth on each type of goods

when preferences are Cobb-Douglas. In a dynamic context, this property implies that

the representative consumer spends a constant fraction of the present value of total

wealth on the nominal consumption of a given period. Hence, consumption is adjusted

each period to keep total consumption spending constant over time. As a consequence,

savings do not depend on price volatility in the example since consumption absorbs all

the fluctuation in prices.

2 Model

Time is discrete and discounted by a factor β ∈ (0, 1). An infinitely-lived representative

consumer maximizes the present discounted value of utility, which depends on the

consumption level c chosen in each period. The utility function is logarithmic u(c) =

ln c. Its concavity implies that the consumer is risk averse and the convexity of its

marginal utility implies that the consumer is also prudent. Consumption goods cost P

each period. This price is stochastic and depends on two components : i) an aggregate

component Γ > 0 that deterministically grows at a gross rate Π and ii) a stochastic

component p̃ that is drawn each period from a log normal distribution with mean zero

and variance σ2, i.e. ln p̃ ∼ N (0, σ2). Hence,

P = Γp̃.
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In each each period, the consumer receives an exogenous deterministic nominal

wage W that depends on a parameter w̃ > 0 (which can be interpreted as a constant

marginal product of labor) and the aggregate component of the price level Γ, that is

W = Γw̃.

An asset owned in quantities A is used to save nominal resources across periods.

Its gross nominal interest rate I is known before the realization of the p̃ shock and it

is fixed by a monetary policy rule at a given level each period.1 Notice that the asset

does not provide insurance against the risk associated with the stochastic component

of the price level p̃. We can thus write the budget constraint in nominal terms as

A′ = IA+W − Pc,

where the prime notation refers to next period variables while variables without a

prime are associated with current period. Below we will sometimes use the subscript

notation t when more than two periods will be involved.

In order to be able to write a Bellman equation, we need to rescale this budget

constraint. By dividing both sides of the equation by Γ, one obtains

a′ = Ra+ w − pc, (1)

with a = A
Γ , R = I

Π , w = w̃
Π and p = p̃

Π . We assume that the standard absolute

impatience assumption Rβ < 1 holds as well as the finite human wealth assumption

R > 1 (Carroll, 2024).

The following Bellman equation describes the program of the consumer:

V (a, p) = max
c,a′

u(c) + βEp′
[
V (a′, p′)

]
(2)

subject to the budget constraint (1) as well as standard non negativity constraints and

the no-Ponzi game condition.

3 Equilibrium

Given the program in (2), one can derive the following Euler equation:

1

pc
= βREp′

[
1

p′c′

]
(3)

1In Section 4.4, we explore an alternative monetary policy rule that fixes the real interest rate.
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Notice that, according to (3), the representative consumer chooses to smooth total

spending on consumption over time. This property is a consequence of the logarithmic

assumption for the utility function. Log utility is Cobb Douglas utility and one of its

well-known properties is that the consumer spends a fixed fraction of her wealth on

a given good. Even though this property has been given more attention in a static

context, it still applies in a dynamic context, where a fixed fraction of the present

value of total wealth is spent on the consumption of a given period. As a consequence,

one can conjecture that the consumer chooses a high level of consumption when the

realization of p̃ is low and, vice versa, a low level of consumption is chosen when the

realization of p̃ is high, so that the total amount spent on consumption pc follows a flat

trajectory over time. This conjecture is confirmed by the following proposition that

gives the optimal decision rule for consumption spending:

Proposition 1. The following decision rule for spending on consumption is consistent

with the Euler equation (3):

pc = (1− β)R

(
a+

w

R− 1

)
(4)

Moreover, the decision described in (4) is also consistent with the following transver-

sality condition:

lim
k→∞

βkEt

[
1

pt+k
u′(ct+k)at+k

]
= 0

The proof of Proposition 1 can be found in the Appendix A.1 and Appendix A.2.

In economic terms, the consumer in (4) simply chooses to spend a fraction (1 − β)

of total wealth on consumption2, while leaving a fraction β for savings. Notice that

the decision rule implies that total spending is independent of the realization of the

stochastic component of the price level p̃, nor it depends on the variability σ2 of this

component. A corollary of this proposition is that next period assets (i.e. savings) do

not depend on σ2 either:

a′ = βRa+ w
Rβ − 1

R− 1
(5)

2a are the accumulated assets while w
R−1 is the human wealth derived from the present value of current

and future wages. Given the timing of earned interests and consumption spending in equation (1), total
wealth needs to take into account the interests earned during the period, implying the presence of R in front
of the sum of these two terms.
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4 Further discussion

4.1 On duality

The result about inflation risk not affecting precautionary savings may come as a

surprise because one may think it should have effects similar to the impact of real

wage risk. However, the price of goods in the model affects other components of the

budget constraint than the real wage. To see it, one simply needs to devide each side

of equation (1) by p to get
a′

p
=
Ra

p
+
w

p
− c.

One can see from the equation above that a change in p has consequences for purchasing

power as both w and a are divided by it. But p also affects the consumer’s ability to

build assets for the future since a′ on the left hand side is also divided by p. This

difference explains why the risk associated with p has different consequences than a

potential risk associated with w.

4.2 Multiple goods

Our Cobb-Douglas framework can be easily extended to multiple goods. Consider now

that c in the utility function is a composite good that depends on the consumption of

N other goods xi:

c = ΠN
i=1xi

θi

with
∑N

i=1 θi = 1, and the following formulation of the budget constraint:

a′ = Ra+ w − s. (6)

where s =
∑N

i=1 xipi is total consumption spending: each one of the new introduced

goods is priced pi, which is stochastic and drawn from a log normal distribution. We

store the pi’s in a vector p̄ of prices.

Intratemporal first-order conditions allow to establish that

xipi = θis,

This relation allows us to write the Bellman equation in terms of total spending as

V̂ (a, p̄) = max
s,a′

v(s, p̄) + βEp̄′
[
V̂ (a′, p̄′)

]
, (7)

subject to (6) and with the pseudo indirect utility v(s, p̄) = ln s+
∑N

i=1 θi ln
(
θi
pi

)
.
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With this formulation, one can show that the corollary result of equation (5) also

applies.

4.3 Risk aversion

Proposition 1 and the corollary decision rule for next-period assets in equation (5)

illustrate that savings do not depend on the variance σ2. It is possible to show that

the value V is also independent of price volatility, even though it is decreasing in p.

The proof can be found in Appendix A.3 and this property is summarized in the next

proposition:

Proposition 2. The value V (a, p) does not depend on σ2 and V (a, p) is strictly de-

creasing in p.

The upshot here is there is no risk associated with total spending. Given that the

representative agent chooses to smooth total spending over time, larger price variability

does not affect expected utility.

4.4 Monetary policy rule

The monetary policy rule in Section 2 is such that the nominal interest rate is constant

over time. Such assumption typically describes a rather passive central bank or a

central bank worried about the zero lower bound or within a monetary union. We now

consider an alternative rule that keeps the real interest rate constant. Given a target

R̄ for the real interest rate, the monetary policy rule rescales the nominal interest to

compensate for expected inflation such that R(p) = R̄P
p with P = Ep′

(
1
p′

)−1
.

Under the monetary policy rule, the Euler equation can be written as follows:

1

c
= βR̄PEp′

[
1

p′c′

]
. (8)

One can understand from this condition that the growth rate of real consumption is

deterministic and subject to the following evolution:

c′ = gc, (9)

with g = βR̄.

In the Appendix A.4, we show that this deterministic trajectory implies that spend-

ing on consumption is independent of price risk in the case of this monetary policy rule
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as it satisfies

ctpt =
R̄(1− β)

(
at + w

R̄−1

)

(1− β) + β Ppt
. (10)

Notice that, when pt = P , consumption spending is as in (4), where the monetary

policy rule targets a constant nominal interest rate. But, when pt 6= P , nominal

spending deviates from (4) and it is now increasing in pt to keep the trajectory of real

consumption as in (9), but price risk per se does not influence savings.3

4.5 Borrowing constraint

The two standard assumptions that yield precautionary savings are prudence and an

occasionally binding borrowing constraint. In the example of Section 2, we consider the

former assumption. We now investigate how the latter assumption shapes the relation

between inflation risk and savings. We can only present numerical results, but the

upshot is that an increase in the variance of the stochastic component of the price level

generates precautionary savings in this case but the impact is lower than an increase

in the variance of nominal wages, though the difference is not very large. Because we

want to produce results that are comparable from a quantitative perspective, we also

consider stochastic nominal wages in the model of Section 2, that is, the parameter w

now becomes a random variable and we fix its stochastic properties so that we obtain

the same distribution for the real wage (i.e, the variable w/p) as in the case where p is

stochastic. We find that an increase in the variance of w has a larger impact on savings

than in the case of an increase in the variance of p.

In Table 1, we consider four sets of simulations.4 In the first row, we simulate

100,000 paths of 50 time periods for nominal assets and consider shocks to p, while the

second row considers shocks to w instead. The first column considers a standard devi-

ation for the real wage w/p of 0.17, while the second column has a standard deviation

of 0.25. Additionally, the table reports in parentheses the share of observations where

the borrowing constraint is binding for each set of simulations. One notice that moving

from the low variance to the high variance framework doubles the average amount of

assets that the agent owns. However the impact is larger in the case where wages are

stochastic. This suggests that the results in Proposition 1 only extend partially to a

3Given the lognormal assumption for pt, an increase in σ2 should also increase the expected price P , but
it would also increase the average realization of pt. Hence, σ2 influences consumption spending in (10) not
for precautionary reasons but because it increases expected future prices for a given pt.

4Policy functions are approximated numerically by using the endogenous gridpoint method described in
Carroll (2006) while recentering the grid in each iteration as in Auclert (2024). We consider grids of 11
points for each simulation.
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Table 1: Nominal assets across four sets of simulations

Low variance High variance
Stochastic price 1 2.07

(10.9%) (8.24%)
Stochastic wage 0.99 2.12

(10.6%) (7.4%)

Notes: the table compares average nominal assets across four sets of simulations. The variable p is the one
that is stochastic under the “Stochastic price” simulations, while w is the one that is stochastic under the
“Stochastic wage” simulations. Under “Low variance” the real wage (i.e. the variable w/p) has a mean of 1
and a standard deviation of 0.17, while the standard deviation is 0.25 under “High variance” (with a mean
of 1 too). Each set includes 100,000 simulated paths of 50 time periods. Initial assets are fixed to 0.5 and the
debt limit is 0. Numbers are normalized by the level of the upper left case to ease comparison. We include
in parentheses the share of time periods where the borrowing constraint is binding.

context with an occasionally binding borrowing constraint.

5 Conclusion

In this note, we have illustrated that prudent consumers do not necessarily save more

against an increase in inflation risk when they are prudent. The intuition for the result

relies on logarithmic utility: the consumer spends a constant fraction of total nominal

wealth on nominal consumption. As a consequence, a shock to prices is absorbed by

consumption to smooth nominal spending over time, leaving savings unaffected by the

shock.
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A Appendix: Proofs

A.1 Policy function

We show that the decision rule (4) is consistent with the Euler equation (3). We rely

on a guess and verify procedure that relies on the following guess structure:

pc = αa+ δ,

where α and δ are parameters to be determined. By replacing this guess in the Euler

equation we obtain:
1

αa+ δ
= βREp̃′

[
1

αa′ + δ

]
.

Given that a′ is determined before the realization of the p̃ shock, we can ignore the

expectation on the right hand side of the equation as follows:

αa′ + δ = βR [αa+ δ] ,

which, by using the budget constraint (1), can be rewritten as

α[Ra+ w − (αa+ δ)] + δ = βR [αa+ δ] .

By rearranging terms in the equation above, we obtain:

[(1− β)R− α]αa+ αw + (1− α− βR)δ = 0

The equation above can be zero if the parameters α and δ take the following values:

α = (1− β)R and δ = (1− β)R
w

R− 1

These parameter values yield the decision given by equation (4).

A.2 Transversality condition

We now show if the transversality condition given in Proposition 1 holds for the decision

rule (4). This is a necessary step to show that (4) is an optimal decision.

Given the law of motion for assets in (5), one can obtain the level of assets k periods

ahead:

at+k = (βR)k at + w
Rβ − 1

R− 1

(
k−1∑

i=0

(βR)i

)
(11)
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Given the absolute impatience assumption βR < 1, we can derive the following

limit:

lim
k→∞

at+k = − w

R− 1
,

implying also that

lim
k→∞

ct+kpt+k = 0.

Unfortunately, the latter two results imply that the limit limk→∞Et
[
βkat+k

pt+kct+k

]
is

indeterminate as both the numerator and the denominator converge towards the value

zero. But one can solve this indeterminacy by applying l’Hôpital’s rule. Notice that

the derivative of the numerator with respect to k is equal to
[
βk ln(β)at+k + βk

dat+k

dk

]
,

while the derivative of the denominator is equal to (1− β)R
dat+k

dk . We thus have that

lim
k→∞

Et

[
βkat+k
pt+kct+k

]
=
βk ln(β)at+k + βk

dat+k

dk

(1− β)R
dat+k

dk

Now notice from (11) that limk→∞
dat+k

dk = at(βR)k ln(βR). Hence,

lim
k→∞

Et

[
βkat+k
pt+kct+k

]
=

1

(1− β)R

[
ln(β)

(βR)k at − w
R−1

atRk ln(βR)
+ βk

]
= 0

given the restrictions on β and R that were assumed in Section 2.

A.3 Risk aversion

By using the information in (7) for N = 1 together with decision rules (4) and (5), we

can write the value function as

V (a, p) = ln

[
(1− β)R

(
a+

w

R− 1

)]
− ln p+ βEp′

[
V

(
βRa+ w

Rβ − 1

R− 1
, p′
)]

.

Given the log normal assumption for the stochastic component of the price level, the

expectation can be written as follows:

Ep [V (a, p)] = ln

[
(1− β)R

(
a+

w

R− 1

)]
+ βEp′

[
V

(
βRa+ w

Rβ − 1

R− 1
, p′
)]

.
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One can calculate the expectation on the continuation value above in a similar way

and obtain recursively that

Ep [V (a, p)] =
1

1− β ln

[
(1− β)R

(
a+

w

R− 1

)]
+ ln (βR)

[ ∞∑

i=0

iβi

]
,

after noticing that next period spending is related to current period spending as s′ =

βRs. The equation above can be rewritten as

Ep [V (a, p)] =
1

1− β ln

[
(1− β)R

(
a+

w

R− 1

)]
+ ln (βR)

β

(β − 1)2
, (12)

given that
∑∞

i=0 iβ
i = β

(β−1)2
.

Hence, the value does not depend on σ2, though it is strictly decreasing in p as

V (a, p) = Ep [V (a, p)]− ln p,

with Ep [V (a, p)] as in (12).

A.4 Monetary policy rule

According to the budget constraint (1), we can write that

ptct = Rtat + w − at+1.

Given that, according to the same budget constraint, we have that

at+1 =
at+2

Rt+1
− w

Rt+1
+
pt+1

Rt+1
ct+1,

we can also write it as

ptct +
pt+1

Rt+1
ct+1 = Rtat + w +

w

Rt+1
− at+2

Rt+1
.

Following a similar reasoning, by recursive substitution, one can get for any k ≥ 0

that
k∑

i=0

pt+i(
Πi
j=0Rt+j

)ct+i = at +
k∑

i=0

w(
Πi
j=0Rt+j

) − at+k+1(
Πk
j=0Rt+j

) .
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Given the deterministic growth rate established in (9), it follows that

ct




k∑

i=0

gipt+i(
Πi
j=0Rt+j

)


 = at +

k∑

i=0

w(
Πi
j=0Rt+j

) − at+k+1(
Πk
j=0Rt+j

) .

Taking expectations conditional on the information set in period t for the limit

when k →∞ and considering the no-Ponzi game condition yields

ctEt



∞∑

i=0

gipt+i(
Πi
j=0Rt+j

)


 = at + wEt



∞∑

i=0

1(
Πi
j=0Rt+j

)


 .

Considering now the monetary policy rule introduced in Section 4.4, notice that

Et

[
R̄P
pt+1

]
= R̄. Hence, after considering the law of iterated expectations, one gets that

ctEt

[ ∞∑

i=0

gipt+i
R̄i+1

]
= at + wEt

[ ∞∑

i=0

1

R̄i+1

]
,

which can be rewritten as

ctpt

(
(1− β) + β

P

pt

)
= R̄(1− β)

(
at +

w

R̄− 1

)
,

yielding the decision rule (10).
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